Revised Regulations for the Master of Pharmacy Degree Program (w.e.f. June 2016)

Credit Based Semester System

M. PHARM. PHARMACEUTICAL QUALITY ASSURANCE (MQA)

Pharmacy Council of India
Combined Council's Building, Kotla Road, Aiwan-E-Ghalib Marg,
New Delhi-110 002
CHAPTER – I: REGULATIONS

1. **Short Title and Commencement**
These regulations shall be called as “The Revised Regulations for the Master of Pharmacy (M. Pharm.) Degree Program - Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi”. They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. **Minimum qualification for admission**
 A Pass in the following examinations
 a) B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55% of the maximum marks (aggregate of 4 years of B.Pharm.)

 b) Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall be cancelled.

 Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. **Duration of the program**
The program of study for M.Pharm. shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Phamacy Council of India, New Delhi.

4. **Medium of instruction and examinations**
Medium of instruction and examination shall be in English.

5. **Working days in each semester**
Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from the month of December/January to May/June in every calendar year.
6. Attendance and progress
A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure
As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/per activity.

7.1. Credit assignment
7.1.1. Theory and Laboratory courses
Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits. i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements
The minimum credit points required for the award of M. Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses, Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits are distributed semester-wise as shown in Table V. Courses generally progress in sequence, building competencies and their positioning indicates certain academic
maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work
A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department / teaching staff of respective courses.

9. Course of study
The specializations in M.Pharm program is given in Table 1.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Specialization</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cosmeceutics</td>
<td>MCC</td>
</tr>
<tr>
<td>2.</td>
<td>Industrial Pharmacy</td>
<td>MIP</td>
</tr>
<tr>
<td>3.</td>
<td>Pharmaceutical Analysis</td>
<td>MPA</td>
</tr>
<tr>
<td>4.</td>
<td>Pharmaceutical Biotechnology</td>
<td>MPB</td>
</tr>
<tr>
<td>5.</td>
<td>Pharmaceutical Chemistry</td>
<td>MPC</td>
</tr>
<tr>
<td>6.</td>
<td>Pharmaceutics</td>
<td>MPH</td>
</tr>
<tr>
<td>7.</td>
<td>Pharmacognosy</td>
<td>MPG</td>
</tr>
<tr>
<td>8.</td>
<td>Pharmacology</td>
<td>MPL</td>
</tr>
<tr>
<td>9.</td>
<td>Pharmacy Practice</td>
<td>MPP</td>
</tr>
<tr>
<td>10.</td>
<td>Pharmaceutical Quality Assurance</td>
<td>MQA</td>
</tr>
<tr>
<td>11.</td>
<td>Pharmaceutical Regulatory Affairs</td>
<td>MRA</td>
</tr>
</tbody>
</table>

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table – II to XIII. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table – II to XIII.
Table – 11: Course of study for M. Pharm. (Pharmaceutical Quality Assurance)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
<th>Hrs./wk</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA101T</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA101T</td>
<td>Quality Management System</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA102T</td>
<td>Quality Control and Quality Assurance</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA103T</td>
<td>Product Development and Technology Transfer</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA104P</td>
<td>Pharmaceutical Quality Assurance Practical I</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>650</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
<th>Hrs./wk</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQA201T</td>
<td>Hazards and Safety Management</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA202T</td>
<td>Pharmaceutical Validation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA203T</td>
<td>Audits and Regulatory Compliance</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA204T</td>
<td>Pharmaceutical Manufacturing Technology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MQA205P</td>
<td>Pharmaceutical Quality Assurance Practical II</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>650</td>
</tr>
</tbody>
</table>
Table – 13: Course of study for M. Pharm. III Semester
(Common for All Specializations)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRM101T</td>
<td>Research Methodology and Biostatistics*</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Proposal Presentation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research Work</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>21</td>
</tr>
</tbody>
</table>

* Non University Exam

Table – 14: Course of study for M. Pharm. IV Semester
(Common for All Specializations)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Journal Club</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Research Work</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Discussion/Final Presentation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>20</td>
</tr>
</tbody>
</table>

Table – 15: Semester wise credits distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>26</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
</tr>
<tr>
<td>III</td>
<td>21</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
</tr>
<tr>
<td>Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)</td>
<td>Minimum=02 Maximum=07*</td>
</tr>
<tr>
<td>Total Credit Points</td>
<td>Minimum=95 Maximum=100*</td>
</tr>
</tbody>
</table>

*Credit Points for Co-curricular Activities
Table – 16: Guidelines for Awarding Credit Points for Co-curricular Activities

<table>
<thead>
<tr>
<th>Name of the Activity</th>
<th>Maximum Credit Points</th>
<th>Eligible / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in National Level Seminar/Conference/Workshop/Symposium/Training</td>
<td>01</td>
<td>Program (related to the specialization of the student)</td>
</tr>
<tr>
<td>Programs (related to the specialization of the student)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in international Level Seminar/Conference/Workshop/Symposium/Training</td>
<td>02</td>
<td>Program (related to the specialization of the student)</td>
</tr>
<tr>
<td>Programs (related to the specialization of the student)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Award/Research Award from State Level/National Agencies</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Academic Award/Research Award from International Agencies</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)</td>
<td>02</td>
<td></td>
</tr>
</tbody>
</table>

Note: International Conference: Held Outside India
International Journal: The Editorial Board Outside India

* The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

10. Program Committee

1. The M. Pharm. programme shall have a Programme Committee constituted by the Head of the institution in consultation with all the Heads of the departments.

2. The composition of the Programme Committee shall be as follows:

 A teacher at the cadre of Professor shall be the Chairperson; One Teacher from each M.Pharm specialization and four student representatives (two from each academic year), nominated by the Head of the institution.

3. Duties of the Programme Committee:

 i. Periodically reviewing the progress of the classes.
 ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
 iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.
 iv. Communicating its recommendation to the Head of the institution on academic matters.
v. The Programme Committee shall meet at least twice in a semester preferably at the end of each sessionalexam and before the end semester exam.

11. Examinations/Assessments
The schemes for internal assessment and end semester examinations are given in Table – XVII.

11.1. End semester examinations
The End Semester Examinations for each theory and practical coursethrough semesters I to IVshall be conducted by the respective university except for the subject with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.
Tables – 26: Schemes for internal assessments and end semester examinations (Pharmaceutical Quality Assurance)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>Total Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA101T</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA101T</td>
<td>Quality Management System</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA102T</td>
<td>Quality Control and Quality Assurance</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA103T</td>
<td>Product Development and Technology Transfer</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA104P</td>
<td>Pharmaceutical Quality Assurance Practical I</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>-</td>
<td>Seminar /Assignment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MQA201T</td>
<td>Hazards and Safety Management</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA202T</td>
<td>Pharmaceutical Validation</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA203T</td>
<td>Audits and Regulatory Compliance</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA204T</td>
<td>Pharmaceutical Manufacturing Technology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MQA205P</td>
<td>Pharmaceutical Quality Assurance Practical II</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>-</td>
<td>Seminar /Assignment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course</td>
<td>Internal Assessment</td>
<td>End Semester Exams</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Continuous Schemes</td>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td></td>
<td>Sessional Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>MRM101T</td>
<td>Research Methodology and Biostatistics*</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation (Proposal Presentation)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Research work*</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRM101T</td>
<td>Research Methodology and Biostatistics*</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation (Proposal Presentation)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Research work and Colloquium</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Non University Examination
11.2. Internal assessment: Continuous mode
The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table – 29: Scheme for awarding internal assessment: Continuous mode

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Theory</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance (Refer Table – 30)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Practical		10
Attendance (Refer Table – 30)		10
Based on Practical Records, Regular viva voce, etc.		10
Total		**20**

11.2.1. Sessional Exams
Two sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given below. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given in tables – X.

12. Promotion and award of grades
A student shall be declared PASS and eligible for getting grade in a course of M.Pharm. programme if he/she secures at least 50% marks in that particular course including internal assessment.

13. Carry forward of marks
In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment
A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Reexamination of end semester examinations
Reexamination of end semester examination shall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.

Table – 31: Tentative schedule of end semester examinations

<table>
<thead>
<tr>
<th>Semester</th>
<th>For Regular Candidates</th>
<th>For Failed Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I and III</td>
<td>November / December</td>
<td>May / June</td>
</tr>
<tr>
<td>II and IV</td>
<td>May / June</td>
<td>November / December</td>
</tr>
</tbody>
</table>

16. Allowed to keep terms (ATKT):
No student shall be admitted to any examination unless he/she fulfills the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and II semesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances
17.1. Letter grades and grade points allocations:
Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – 32:
Table – 32: Letter grades and grade points equivalent to Percentage of marks and performances

<table>
<thead>
<tr>
<th>Percentage of Marks Obtained</th>
<th>Letter Grade</th>
<th>Grade Point</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00 – 100</td>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
</tr>
<tr>
<td>80.00 – 89.99</td>
<td>A</td>
<td>9</td>
<td>Excellent</td>
</tr>
<tr>
<td>70.00 – 79.99</td>
<td>B</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>60.00 – 69.99</td>
<td>C</td>
<td>7</td>
<td>Fair</td>
</tr>
<tr>
<td>50.00 – 59.99</td>
<td>D</td>
<td>6</td>
<td>Average</td>
</tr>
<tr>
<td>Less than 50</td>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Absent</td>
<td>AB</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)
The performance of a student in a semester is indicated by a number called ‘Semester Grade Point Average’ (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student’s grade points in these courses are G1, G2, G3 and G4, respectively, and then students’ SGPA is equal to:

\[
SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4}{C_1 + C_2 + C_3 + C_4}
\]

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

\[
SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4 \times \text{ZERO}}{C_1 + C_2 + C_3 + C_4}
\]

19. Cumulative Grade Point Average (CGPA)
The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade
on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

\[
\text{CGPA} = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4}{C_1 + C_2 + C_3 + C_4}
\]

where \(C_1, C_2, C_3, \ldots \) is the total number of credits for semester I, II, III, \ldots and \(S_1, S_2, S_3, \ldots \) is the SGPA of semester I, II, III, \ldots.

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

- First Class with Distinction = CGPA of 7.50 and above
- First Class = CGPA of 6.00 to 7.49
- Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.
Evaluation of Dissertation Book:

<table>
<thead>
<tr>
<th>Evaluation of Dissertation Book:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective(s) of the work done</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Methodology adopted</td>
<td>150 Marks</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td>250 Marks</td>
</tr>
<tr>
<td>Conclusions and Outcomes</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>500 Marks</td>
</tr>
</tbody>
</table>

Evaluation of Presentation:

<table>
<thead>
<tr>
<th>Evaluation of Presentation:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation of work</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Communication skills</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Question and answer skills</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>250 Marks</td>
</tr>
</tbody>
</table>

22. Award of Ranks
Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the M.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the M. Pharm program in minimum prescribed number of years, (two years) for the award of Ranks.

23. Award of degree
Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

24. Duration for completion of the program of study
The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

25. Reevaluation / Retotaling of answer papers
There is no provision for revaluation of the answer papers in any examination. However, the candidates can apply for retotaling by paying prescribed fee.

26. Re-admission after break of study
Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.
M. PHARM. PHARMACEUTICAL QUALITY ASSURANCE (MQA)
MODERN PHARMACEUTICAL ANALYSIS (MPA101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY
60 HOURS

IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy, Data Interpretation.

Spectrofluorimetry: Theory of Fluorescence, Factors affecting fluorescence (Characteristics of drugs that can be analysed by flourimetry), Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

2 NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

4 **Chromatography**: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:
 a) Thin Layer chromatography
 b) High Performance Thin Layer Chromatography
 c) Ion exchange chromatography
 d) Column chromatography
 e) Gas chromatography
 f) High Performance Liquid chromatography
 g) Ultra High Performance Liquid chromatography
 h) Affinity chromatography
 i) Gel Chromatography

5 **Electrophoresis**: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis
 b) Gel electrophoresis
 c) Capillary electrophoresis
 d) Zone electrophoresis
 e) Moving boundary electrophoresis
 f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

6 **Potentiometry**: Principle, working, Ion selective Electrodes and Application of potentiometry.

Thermal Analysis: Polymer behavior, factors affecting and instrumentation, and working, application of TGA

REFERENCES (Latest edition to be recommended)
8. James Connors
QUALITY MANAGEMENT SYSTEMS (MQA101T)

Scope

This course is designed to impart fundamental knowledge and concepts about various quality management principles and systems utilized in the manufacturing industry. It also aids in understanding the quality evaluation in the pharmaceutical industries.

Objectives

At completion of this course it is expected that students will be able to understand-

- The importance of quality
- ISO management systems
- Tools for quality improvement
- Analysis of issues in quality
- Quality evaluation of pharmaceuticals
- Stability testing of drug and drug substances
- Statistical approaches for quality

THEORY 60 Hrs

1. Introduction to Quality: Evolution of Quality, Definition of Quality, Dimensions of Quality

 Quality as a Strategic Decision: Meaning of strategy and strategic quality management, mission and vision statements, quality policy, Quality objectives, strategic planning and implementation, McKinsey 7s model, Competitive analysis, Management commitment to quality

 Customer Focus: Meaning of customer and customer focus, Classification of customers, Customer focus, Customer perception of quality, Factors affecting customer perception, Customer requirements, Meeting customer needs and expectations, Customer satisfaction and Customer delight, Handling customer complaints, Understanding customer behavior, concept of internal and external customers. Case studies.

 Cost of Quality: Cost of quality, Categories of cost of Quality, Models of cost of quality, Optimising costs, Preventing cost of quality

12 Hrs

3. **Six System Inspection model**: Quality Management system, Production system, Facility and Equipment system, Laboratory control system, Materials system, Packaging and labeling system. Concept of self inspection.

12 Hrs

 Study of ICH Q8, Quality by Design and Process development report

 Quality risk management: Introduction, risk assessment, risk control, risk review, risk management tools, HACCP, risk ranking and filtering according to ICH Q9 guidelines

12 Hrs

5. **Statistical Process control (SPC)**: Definition and Importance of SPC, Quality measurement in manufacturing, Statistical control charts - concepts and general aspects, Advantages of statistical control, Process capability, Estimating Inherent or potential capability from a control chart analysis, Measuring process control and quality improvement, Pursuit of decreased process variability.

8Hrs

6. **Regulatory Compliance through Quality Management and development of Quality Culture**
Benchmarking: Definition of benchmarking, Reasons for benchmarking, Types of Benchmarking, Benchmarking process, Advantages of benchmarking, Limitations of benchmarking

REFERENCES:

1. Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results, By Al Endres, Wiley, 2000
2. Understanding, Managing and Implementing Quality: Frameworks, Techniques and Cases, By Jiju Antony; David Preece, Routledge, 2002
4. Corporate Culture and the Quality Organization By James W. Fairfield-Sonn, Quorum Books, 2001
QUALITY CONTROL AND QUALITY ASSURANCE (MQA102T)

Scope:
This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs.

Objectives:
Upon completion of this course the student should be able to

- Understand the cGMP aspects in a pharmaceutical industry
- To appreciate the importance of documentation
- To understand the scope of quality certifications applicable to Pharmaceutical industries
- To understand the responsibilities of QA & QC departments.

THEORY 60 Hrs

1. Introduction: Concept and evolution and scopes of Quality Control and Quality Assurance,
 Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q-series guidelines.
 Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non clinical testing, control on animal house, report preparation and documentation. CPCSEA guidelines.
 12 Hrs

2. cGMP guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA covering: Organization and personnel responsibilities, training, hygiene and personal records, drug industry location, design, construction and plant lay out, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination and Good Warehousing Practice.
 12 Hrs
3. **Analysis of raw materials, finished products, packaging materials, in process quality control (IPQC), Developing specification (ICH Q6 and Q3),** purchase specifications and maintenance of stores for raw materials.

In process quality control and finished products quality control for following dosage forms in Pharma industry according to Indian, US and British pharmacopoeias: tablets, capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical products (How to refer pharmacopoeias).

10 Hrs

4. **Documentation in pharmaceutical industry:** Three tier documentation, Policy, Procedures and Work instructions, and records (Formats), Basic principles- How to maintain, retention and retrieval etc. Standard operating procedures (How to write), Master Batch Record, Batch Manufacturing Record, Quality audit plan and reports. Specification and test procedures, Protocols and reports. Distribution records.

Electronic data handling. Concepts of controlled and uncontrolled documents.

12 Hrs

5. **Manufacturing operations and controls:** Sanitation of manufacturing premises, mix-ups and cross contamination, processing of intermediates and bulk products, packaging operations, IPQC, release of finished product, process deviations, charge-in of components, time limitations on production, drug product inspection, expiry date calculation, calculation of yields, production record review, change control, sterile products, aseptic process control, packaging, reprocessing, salvaging, handling of waste and scrap disposal.

Introduction, scope and importance of intellectual property rights. Concept of trademark, copyright and patents.

12 Hrs

REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ICH guidelines</td>
</tr>
<tr>
<td>8</td>
<td>ISO 9000 and total quality management</td>
</tr>
<tr>
<td>14</td>
<td>Packaging of Pharmaceuticals.</td>
</tr>
<tr>
<td>15</td>
<td>Schedule M and Schedule N.</td>
</tr>
</tbody>
</table>
PRODUCT DEVELOPMENT AND TECHNOLOGY TRANSFER (MQA103T)

Scope

This deal with technology transfer covers the activities associated with Drug Substance, Drug Product and analytical tests and methods, required following candidate drug selection to completion of technology transfer from R&D to the first receiving site and technology transfer related to post-marketing changes in manufacturing places.

Objectives:

Upon completion of this course the student should be able to

- To understand the new product development process
- To understand the necessary information to transfer technology from R&D to actual manufacturing by sorting out various information obtained during R&D
- To elucidate necessary information to transfer technology of existing products between various manufacturing places

THEORY

60 Hrs

1. **Principles of Drug discovery and development:** Introduction, Clinical research process. Development and informational content for Investigational New Drugs Application (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Supplemental New Drug Application (SNDA), Scale Up Post Approval Changes (SUPAC) and Bulk active chemical Post approval changes (BACPAC), Post marketing surveillance, Product registration guidelines – CDSCO, USFDA.

 12 Hrs

2. **Preformulation studies:** Introduction/concept, organoleptic properties, purity, impurity profiles, particle size, shape and surface area. Solubility, Methods to improve solubility of Drugs: Surfactants & its importance, co-solvency. Techniques for the study of Crystal properties and polymorphism. Preformulation protocol, Stability testing during product development.

 12 Hrs

3. **Pilot plant scale up:** Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula, equipment, process, stability and quality control) of solids, liquids, semisolid and parenteral dosage forms. New era of drug products: opportunities and challenges.

 12 Hrs

4. **Pharmaceutical packaging:** Pharmaceutical dosage form and their packaging requirements, Pharmaceutical packaging materials, Medical device packaging, Enteral Packaging, Aseptic packaging systems, Container closure systems, Issues facing
modern drug packaging, Selection and evaluation of Pharmaceutical packaging materials.

Quality control test: Containers, closures and secondary packing materials.

12 Hrs

5. **Technology transfer:** Development of technology by R & D, Technology transfer from R & D to production, Optimization and Production, Qualitative and quantitative technology models.

Documentation in technology transfer: Development report, technology transfer plan and Exhibit.

12 Hrs

REFERENCES

QUALITY ASSURANCE PRACTICAL-1 (MQA104P)

PRACTICALS

1. Analysis of pharmacopoeial compounds in bulk and in their formulations (tablet/capsules/semisolids) by UV Vis spectrophotometer
2. Simultaneous estimation of multi-drug component containing formulations by UV spectrophotometry
3. Experiments based on HPLC
4. Experiments based on Gas Chromatography
5. Estimation of riboflavin/quinine sulphate by fluorimetry
6. Estimation of sodium/potassium by flame photometry or AAS

7. Case studies on
 - Total Quality Management
 - Six Sigma
 - Change Management/Change control. Deviations,
 - Out of Specifications (OOS)
 - Out of Trend (OOT)
 - Corrective & Preventive Actions (CAPA)
 - Deviations

8. Development of Stability study protocol
9. Estimation of process capability
11. In process and finished product quality control tests for tablets, capsules, parenterals and semisolid dosage forms.
12. Assay of raw materials as per official monographs
13. Testing of related and foreign substances in drugs and raw materials
14. To carry out pre formulation study for tablets, parenterals (2 experiment).
15. To study the effect of pH on the solubility of drugs, (1 experiment)
16. Quality control tests for Primary and secondary packaging materials
17. Accelerated stability studies (1 experiment)
18. Improved solubility of drugs using surfactant systems (1 experiment)
19. Improved solubility of drugs using co-solvency method (1 experiment)
HAZARDS AND SAFETY MANAGEMENT (MPA201T)

Scope

This course is designed to convey the knowledge necessary to understand issues related to different kinds of hazard and their management. Basic theoretical and practical discussions integrate the proficiency to handle the emergency situation in the pharmaceutical product development process and provides the principle based approach to solve the complex tribulations.

Objectives

At completion of this course it is expected that students will be able to

- Understand about environmental problems among learners.
- Impart basic knowledge about the environment and its allied problems.
- Develop an attitude of concern for the industry environment.
- Ensure safety standards in pharmaceutical industry
- Provide comprehensive knowledge on the safety management
- Empower an ideas to clear mechanism and management in different kinds of hazard management system
- Teach the method of Hazard assessment, procedure, methodology for provide safe industrial atmosphere.

THEORY

60Hrs

1. Multidisciplinary nature of environmental studies: Natural Resources, Renewable and non-renewable resources, Natural resources and associated problems, a) Forest resources; b) Water resources; c) Mineral resources; d) Energy resources; e) Land resources

Ecosystems: Concept of an ecosystem and Structure and function of an ecosystem.
Environmental hazards: Hazards based on Air, Water, Soil and Radioisotopes.

12 Hrs

2. Air based hazards: Sources, Types of Hazards, Air circulation maintenance industry for sterile area and non sterile area, Preliminary Hazard Analysis (PHA)

Fire protection system: Fire prevention, types of fire extinguishers and critical Hazard management system.

12 Hrs
3. **Chemical based hazards:** Sources of chemical hazards, Hazards of Organic synthesis, sulphonating hazard, Organic solvent hazard, Control measures for chemical hazards, Management of combustible gases, Toxic gases and Oxygen displacing gases management, Regulations for chemical hazard, Management of over-Exposure to chemicals and TLV concept.

12 Hrs

4. **Fire and Explosion:** Introduction, Industrial processes and hazards potential, mechanical electrical, thermal and process hazards. Safety and hazards regulations, Fire protection system: Fire prevention, types of fire extinguishers and critical Hazard management system mechanical and chemical explosion, multiphase reactions, transport effects and global rates. Preventive and protective management from fires and explosion- electricity passivation, ventilation, and sprinkling, proofing, relief systems -relief valves, flares, scrubbers.

12 Hrs

12 Hrs

REFERENCES:

1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore

PHARMACEUTICAL VALIDATION (MQA202T)

Scope

The main purpose of the subject is to understand about validation and how it can be applied to industry and thus improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Objectives

At completion of this course, it is expected that students will be able to understand-

- The concepts of calibration, qualification and validation
- The qualification of various equipments and instruments
- Process validation of different dosage forms
- Validation of analytical method for estimation of drugs
- Cleaning validation of equipments employed in the manufacture of pharmaceuticals

THEORY

60 Hrs

1. Introduction to validation: Definition of Calibration, Qualification and Validation, Scope, frequency and importance. Difference between calibration and validation. Calibration of weights and measures. Advantages of Validation, scope of Validation, Organization for Validation, Validation Master plan, Types of Validation, Streamlining of qualification & Validation process and Validation Master Plan.

12 Hrs

Qualification of analytical instruments: UV-Visible spectrophotometer, FTIR, DSC, GC, HPLC, HPTLC, LC-MS.

12 Hrs

3. **Qualification of laboratory equipments:** Hardness tester, Friability test apparatus, tap density tester, Disintegration tester, Dissolution test apparatus

Validation of Utility systems: Pharmaceutical water system & pure steam, HVAC system, Compressed air and nitrogen.

12 Hrs

4. **Process Validation:** Concept, Process and documentation of Process Validation. Prospective, Concurrent & Retrospective Validation, Re validation criteria, Process Validation of various formulations (Coated tablets, Capsules, Ointment/Creams, Liquid Orals and aerosols.), Aseptic filling: Media fill validation, USFDA guidelines on Process Validation- A life cycle approach.

Analytical method validation: General principles, Validation of analytical method as per ICH guidelines (Q2) and USP.

12 Hrs

5. **Cleaning Validation:** Cleaning Method development, Validation of analytical method used in cleaning, Cleaning of Equipment, Cleaning of Facilities. Cleaning in place (CIP).

Validation of facilities in sterile and non-sterile plant.

Computerized system validation: Electronic records and digital signature - 21 CFR Part 11 and GAMP 5.

12 Hrs

REFERENCES:

3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.

8. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker

10. Huber L. Validation and Qualification in Analytical Laboratories. Informa Healthcare

AUDITS AND REGULATORY COMPLIANCE (MPA203T)

Scope:

This course deals with the understanding and process for auditing in
pharmaceutical industries. This subject covers the methodology involved in the auditing process of different in pharmaceutical industries.

Objectives:

Upon completion of this course the student should be able to

- To understand the importance of auditing
- To understand the methodology of auditing
- To carry out the audit process
- To prepare the auditing report
- To prepare the check list for auditing

THEORY

60 Hrs

1. **Introduction:** Objectives, Management of audit, Responsibilities, Planning process, information gathering, administration, Classifications of deficiencies

 12 Hrs

2. **Role of quality systems and audits in pharmaceutical manufacturing environment:** cGMP Regulations, Quality assurance functions, Quality systems approach, Management responsibilities, Resource, Manufacturing operations, Evaluation activities, Transitioning to quality system approach, Audit checklist for drug industries.

 2 Hrs

3. **Auditing of vendors and production department:** Bulk Pharmaceutical Chemicals and packaging material Vendor audit, Warehouse and weighing, Dry Production: Granulation, tableting, coating, capsules, sterile production and packaging.

 12 Hrs

4. **Auditing of Microbiological laboratory:** Auditing the manufacturing process, Product and process information, General areas of interest in the building raw materials, Water, Packaging materials.

 12 Hrs

5. **Auditing of Quality Assurance and engineering department:** Quality Assurance Maintenance, Critical systems: HVAC, Water, Water for Injection systems, ETP.

 12 Hrs

REFERENCES

1. Compliance auditing for Pharmaceutical Manufacturers. Karen Ginsbury and Gil
PHARMACEUTICAL MANUFACTURING TECHNOLOGY (MPA204T)

Scope

This course is designed to impart knowledge and skills necessary to train the students with the industrial activities during Pharmaceutical Manufacturing.

Objectives

At completion of this course it is expected that students will be able to understand:

- The common practice in the pharmaceutical industry developments, plant layout and production planning
- Will be familiar with the principles and practices of aseptic process technology, non sterile manufacturing technology and packaging technology.
- Have a better understanding of principles and implementation of Quality by design (QbD) and process analytical technology (PAT) in pharmaceutical manufacturing

THEORY

60Hrs

1. Pharmaceutical industry developments: Legal requirements and Licenses for API and formulation industry, Plant location-Factors influencing.
 Plant layout: Factors influencing, Special provisions, Storage space requirements, sterile and aseptic area layout.
 Production planning: General principles, production systems, calculation of standard cost, process planning, routing, loading, scheduling, dispatching of records, production control.

2. Aseptic process technology: Manufacturing, manufacturing flowcharts, in process-quality control tests for following sterile dosage forms: Ointment, Suspension and Emulsion, Dry powder, Solution (Small Volume & large Volume).
Advanced sterile product manufacturing technology: Area planning & environmental control, wall and floor treatment, fixtures and machineries, change rooms, personnel flow, utilities & utilities equipment location, engineering and maintenance.

Process Automation in Pharmaceutical Industry: With specific reference to manufacturing of sterile semisolids, Small Volume Parenterals & Large Volume Parenterals (SVP & LVP), Monitoring of Parenteral manufacturing facility, Cleaning in Place (CIP), Sterilization in Place (SIP), Prefilled Syringe, Powdered Jet, Needle Free Injections, and Form Fill Seal Technology (FFS).

Lyophilization technology: Principles, process, equipment.

12Hrs

Coating technology: Process, equipments, particle coating, fluidized bed coating, application techniques. Problems encountered.

12Hrs

4. Containers and closures for pharmaceuticals: Types, performance, assuring quality of glass; types of plastics used, Drug plastic interactions, biological tests, modification of plastics by drugs; different types of closures and closure liners; film wrapper; blister packs; bubble packs; shrink packaging; foil / plastic pouches, bottle seals, tape seals, breakable seals and sealed tubes; quality control of packaging material and filling equipment, flexible packaging, product package compatibility, transit

5. Quality by design (QbD) and process analytical technology (PAT): Current approach and its limitations. Why QbD is required, Advantages, Elements of QbD, Terminology: QTPP, CMA, CQA, CPP, RLD, Design space, Design of Experiments, Risk Assessment and mitigation/minimization. Quality by Design, Formulations by Design, QbD for drug products, QbD for Drug Substances, QbD for Excipients, Analytical QbD. FDA initiative on process analytical technology. PAT as a driver for improving quality and reducing costs: quality by design (QbD), QA, QC and GAMP. PAT guidance, standards and regulatory requirements.

REFERENCES

8. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc, USA,
2003.

QUALITY ASSURANCE PRACTICAL-II(MQA204P)

PRACTICALS

1. Organic contaminants residue analysis by HPLC
2. Estimation of Metallic contaminants by Flame photometer
3. Identification of antibiotic residue by TLC
4. Estimation of Hydrogen Sulphide in Air.
6. Sampling and analysis of SO₂ using Colorimetric method
7. Qualification of following Pharma equipment
 a. Autoclave b. Hot air oven c. Powder Mixer (Dry) d. Tablet Compression Machine
8. Validation of an analytical method for a drug
9. Validation of a processing area
10. Qualification of at least two analytical instruments
11. Cleaning validation of one equipment
12. Qualification of Pharmaceutical Testing Equipment (Dissolution testing apparatus, Friability Apparatus, Disintegration Tester)
13. Check list for Bulk Pharmaceutical Chemicals vendors
14. Check list for tableting production.
15. Check list for sterile production area
16. Check list for Water for injection.
17. Design of plant layout: Sterile and non-sterile
18. Case study on application of QbD
19. Case study on application of PAT