Revised Regulations for the
Master of Pharmacy Degree Program
(w.e.f. June 2016)

Credit Based Semester System

M. PHARM. PHARMACEUTICAL BIOTECHNOLOGY
(MPB)

Pharmacy Council of India
Combined Council's Building, Kotla Road,
Aiwan-E-Ghalib Marg,
New Delhi-110 002
CHAPTER – I: REGULATIONS

1. Short Title and Commencement
These regulations shall be called as “The Revised Regulations for the Master of Pharmacy (M. Pharm.) Degree Program - Credit Based Semester System (CBSS) of the Pharmacy Council of India, New Delhi”. They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by the authorities of the university.

2. Minimum qualification for admission
A Pass in the following examinations
 a) B. Pharm Degree examination of an Indian university established by law in India from an institution approved by Pharmacy Council of India and has scored not less than 55 % of the maximum marks (aggregate of 4 years of B.Pharm.)

 b) Every student, selected for admission to post graduate pharmacy program in any PCI approved institution should have obtained registration with the State Pharmacy Council or should obtain the same within one month from the date of his/her admission, failing which the admission of the candidate shall be cancelled.

 Note: It is mandatory to submit a migration certificate obtained from the respective university where the candidate had passed his/her qualifying degree (B.Pharm.)

3. Duration of the program
The program of study for M.Pharm. shall extend over a period of four semesters (two academic years). The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi.

4. Medium of instruction and examinations
Medium of instruction and examination shall be in English.

5. Working days in each semester
Each semester shall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from the month of December/January to May/June in every calendar year.
6. Attendance and progress
A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. Program/Course credit structure
As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, practical classes, seminars, assignments, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week/per activity.

7.1. Credit assignment
7.1.1. Theory and Laboratory courses
Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having four lectures per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout the semester carries a credit of 2.

The contact hours of seminars, assignments and research work shall be treated as that of practical courses for the purpose of calculating credits. i.e., the contact hours shall be multiplied by 1/2. Similarly, the contact hours of journal club, research work presentations and discussions with the supervisor shall be considered as theory course and multiplied by 1.

7.2. Minimum credit requirements
The minimum credit points required for the award of M. Pharm. degree is 95. However based on the credit points earned by the students under the head of co-curricular activities, a student shall earn a maximum of 100 credit points. These credits are divided into Theory courses, Practical, Seminars, Assignments, Research work, Discussions with the supervisor, Journal club and Co-Curricular activities over the duration of four semesters. The credits are distributed semester-wise as shown in Table V. Courses generally progress in sequence, building competencies and their positioning indicates certain academic
maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. Academic work
A regular record of attendance both in Theory, Practical, Seminar, Assignment, Journal club, Discussion with the supervisor, Research work presentation and Dissertation shall be maintained by the department / teaching staff of respective courses.

9. Course of study
The specializations in M.Pharm program is given in Table I.

Table – 1: List of M.Pharm. Specializations and their Code

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Specialization</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cosmeceutics</td>
<td>MCC</td>
</tr>
<tr>
<td>2.</td>
<td>Industrial Pharmacy</td>
<td>MIP</td>
</tr>
<tr>
<td>3.</td>
<td>Pharmaceutical Analysis</td>
<td>MPA</td>
</tr>
<tr>
<td>4.</td>
<td>Pharmaceutical Biotechnology</td>
<td>MPB</td>
</tr>
<tr>
<td>5.</td>
<td>Pharmaceutical Chemistry</td>
<td>MPC</td>
</tr>
<tr>
<td>6.</td>
<td>Pharmaceutics</td>
<td>MPH</td>
</tr>
<tr>
<td>7.</td>
<td>Pharmacognosy</td>
<td>MPG</td>
</tr>
<tr>
<td>8.</td>
<td>Pharmacology</td>
<td>MPL</td>
</tr>
<tr>
<td>9.</td>
<td>Pharmacy Practice</td>
<td>MPP</td>
</tr>
<tr>
<td>10.</td>
<td>Pharmaceutical Quality Assurance</td>
<td>MQA</td>
</tr>
<tr>
<td>11.</td>
<td>Pharmaceutical Regulatory Affairs</td>
<td>MRA</td>
</tr>
</tbody>
</table>

The course of study for M.Pharm specializations shall include Semester wise Theory & Practical as given in Table – II to XIII. The number of hours to be devoted to each theory and practical course in any semester shall not be less than that shown in Table – II to XIII.
Table 1: Course of study for M. Pharm. (Pharmaceutical Biotechnology)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
<th>Hrs./wk</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA101T</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB101T</td>
<td>Microbial And Cellular Biology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB102T</td>
<td>Bioprocess Engineering and Technology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB103T</td>
<td>Advanced Pharmaceutical Biotechnology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB104P</td>
<td>Pharmaceutical Biotechnology Practical I</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>650</td>
</tr>
<tr>
<td>Semester II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPB201T</td>
<td>Proteins and protein Formulation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB202T</td>
<td>Immunotechnology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB203T</td>
<td>Bioinformatics and Computer Technology</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB204T</td>
<td>Biological Evaluation of Drug Therapy</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MPB205P</td>
<td>Pharmaceutical Biotechnology Practical II</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Seminar/Assignment</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>26</td>
<td>35</td>
<td>650</td>
</tr>
</tbody>
</table>
Table – 2: Course of study for M. Pharm. III Semester
(Common for All Specializations)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRM101T</td>
<td>Research Methodology and Biostatistics*</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Proposal Presentation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research Work</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>21</td>
</tr>
</tbody>
</table>

* Non University Exam

Table – 3: Course of study for M. Pharm. IV Semester
(Common for All Specializations)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Credit Hours</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Journal Club</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>Research Work</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>-</td>
<td>Discussion/Final Presentation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>20</td>
</tr>
</tbody>
</table>

Table – 15: Semester wise credits distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>26</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
</tr>
<tr>
<td>III</td>
<td>21</td>
</tr>
<tr>
<td>IV</td>
<td>20</td>
</tr>
</tbody>
</table>

Co-curricular Activities
(Attending Conference, Scientific Presentations and Other Scholarly Activities)

<table>
<thead>
<tr>
<th>Minimum=02</th>
<th>Maximum=07*</th>
</tr>
</thead>
</table>

Total Credit Points

<table>
<thead>
<tr>
<th>Minimum=95</th>
<th>Maximum=100*</th>
</tr>
</thead>
</table>

*Credit Points for Co-curricular Activities
Table – 16: Guidelines for Awarding Credit Points for Co-curricular Activities

<table>
<thead>
<tr>
<th>Name of the Activity</th>
<th>Maximum Credit Points Eligible / Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation in National Level Seminar/Conference/Workshop/Symposium/Training Programs (related to the specialization of the student)</td>
<td>01</td>
</tr>
<tr>
<td>Participation in international Level Seminar/Conference/Workshop/Symposium/Training Programs (related to the specialization of the student)</td>
<td>02</td>
</tr>
<tr>
<td>Academic Award/Research Award from State Level/National Agencies</td>
<td>01</td>
</tr>
<tr>
<td>Academic Award/Research Award from International Agencies</td>
<td>02</td>
</tr>
<tr>
<td>Research / Review Publication in National Journals (Indexed in Scopus / Web of Science)</td>
<td>01</td>
</tr>
<tr>
<td>Research / Review Publication in International Journals (Indexed in Scopus / Web of Science)</td>
<td>02</td>
</tr>
</tbody>
</table>

Note: International Conference: Held Outside India
International Journal: The Editorial Board Outside India

* The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

10. Program Committee

1. The M. Pharm. programme shall have a Programme Committee constituted by the Head of the institution in consultation with all the Heads of the departments.

2. The composition of the Programme Committee shall be as follows:

 A teacher at the cadre of Professor shall be the Chairperson; One Teacher from each M.Pharm specialization and four student representatives (two from each academic year), nominated by the Head of the institution.

3. Duties of the Programme Committee:

 i. Periodically reviewing the progress of the classes.
 ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
 iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.
 iv. Communicating its recommendation to the Head of the institution on academic matters.
v. The Programme Committee shall meet at least twice in a semester preferably at the end of each sessionalexam and before the end semester exam.

11. Examinations/Assessments
The schemes for internal assessment and end semester examinations are given in Table – XVII.

11.1. End semester examinations
The End Semester Examinations for each theory and practical coursethrough semesters I to IVshall be conducted by the respective university except for the subject with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.
Tables – 20: Schemes for internal assessments and end semester examinations (Pharmaceutical Biotechnology)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sessional Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPA101T</td>
<td>Modern Pharmaceutical Analytical Techniques</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB101T</td>
<td>Microbial And Cellular Biology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB102T</td>
<td>Bioprocess Engineering and Technology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB103T</td>
<td>Advanced Pharmaceutical Biotechnology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB104P</td>
<td>Pharmaceutical Biotechnology Practical I</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>-</td>
<td>Seminar /Assignment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPB201T</td>
<td>Proteins and protein Formulation</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB202T</td>
<td>Immunotechnology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB203T</td>
<td>Bioinformatics and Computer Technology</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB204T</td>
<td>Biological Evaluation of Drug Therapy</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>MPB205P</td>
<td>Pharmaceutical Biotechnology Practical II</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>-</td>
<td>Seminar /Assignment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
Tables – 28: Schemes for internal assessments and end semester examinations (Semester III& IV)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>Total Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>SEMESTER III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRM101T</td>
<td>Research Methodology and Biostatistics*</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
<td>1 Hr</td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation (Proposal Presentation)</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Research work*</td>
<td>-</td>
<td>-</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal club</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Discussion / Presentation (Proposal Presentation)</td>
<td>-</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Research work and Colloquium</td>
<td>-</td>
<td>-</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Non University Examination
11.2. Internal assessment: Continuous mode
The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table – 29: Scheme for awarding internal assessment: Continuous mode

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Attendance (Refer Table – 30)</td>
<td>8</td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td>Practical Attendance (Refer Table – 30)</td>
<td>10</td>
</tr>
<tr>
<td>Based on Practical Records, Regular viva voce, etc.</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

Table – 30: Guidelines for the allotment of marks for attendance

<table>
<thead>
<tr>
<th>Percentage of Attendance</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>90 – 94</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>85 – 89</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>80 – 84</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Less than 80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

11.2.1. Sessional Exams
Two sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical sessional examinations is given below. The average marks of two sessional exams shall be computed for internal assessment as per the requirements given in tables – X.

12. Promotion and award of grades
A student shall be declared PASS and eligible for getting grade in a course of M.Pharm.programme if he/she secures at least 50% marks in that particular course including internal assessment.

13. Carry forward of marks
In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. Improvement of internal assessment
A student shall have the opportunity to improve his/her performance only once in the sessional exam component of the internal assessment. The re-conduct of the sessional exam shall be completed before the commencement of next end semester theory examinations.

15. Reexamination of end semester examinations
Reexamination of end semester examination shall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.

Table – 31: Tentative schedule of end semester examinations

<table>
<thead>
<tr>
<th>Semester</th>
<th>For Regular Candidates</th>
<th>For Failed Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I and III</td>
<td>November / December</td>
<td>May / June</td>
</tr>
<tr>
<td>II and IV</td>
<td>May / June</td>
<td>November / December</td>
</tr>
</tbody>
</table>

16. Allowed to keep terms (ATKT):
No student shall be admitted to any examination unless he/she fulfills the norms given in 6. ATKT rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I and II semesters till the III semester examinations. However, he/she shall not be eligible to attend the courses of IV semester until all the courses of I, II and III semesters are successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to IV semesters within the stipulated time period as per the norms.

Note: Grade AB should be considered as failed and treated as one head for deciding ATKT. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances
17.1. Letter grades and grade points allocations:
Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – 32:
Table – 32: Letter grades and grade points equivalent to Percentage of marks and performances

<table>
<thead>
<tr>
<th>Percentage of Marks Obtained</th>
<th>Letter Grade</th>
<th>Grade Point</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00 – 100</td>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
</tr>
<tr>
<td>80.00 – 89.99</td>
<td>A</td>
<td>9</td>
<td>Excellent</td>
</tr>
<tr>
<td>70.00 – 79.99</td>
<td>B</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>60.00 – 69.99</td>
<td>C</td>
<td>7</td>
<td>Fair</td>
</tr>
<tr>
<td>50.00 – 59.99</td>
<td>D</td>
<td>6</td>
<td>Average</td>
</tr>
<tr>
<td>Less than 50</td>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Absent</td>
<td>AB</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)
The performance of a student in a semester is indicated by a number called ‘Semester Grade Point Average’ (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3 and C4 and the student’s grade points in these courses are G1, G2, G3 and G4, respectively, and then students’ SGPA is equal to:

\[
SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4}{C_1 + C_2 + C_3 + C_4}
\]

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and ABS grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

\[
SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4\ast \text{ZERO}}{C_1 + C_2 + C_3 + C_4}
\]

19. Cumulative Grade Point Average (CGPA)
The CGPA is calculated with the SGPA of all the IV semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all IV semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade
on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

\[
CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4}{C_1 + C_2 + C_3 + C_4}
\]

where \(C_1, C_2, C_3, \ldots \) is the total number of credits for semester I,II,III,\ldots and \(S_1, S_2, S_3, \ldots \) is the SGPA of semester I,II,III,\ldots.

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:
- First Class with Distinction = CGPA of 7.50 and above
- First Class = CGPA of 6.00 to 7.49
- Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher in Semester III to IV and submit a report. 4 copies of the project report shall be submitted (typed & bound copy not less than 75 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). The projects shall be evaluated as per the criteria given below.
Evaluation of Dissertation Book:

<table>
<thead>
<tr>
<th>Objective(s) of the work done</th>
<th>50 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology adopted</td>
<td>150 Marks</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td>250 Marks</td>
</tr>
<tr>
<td>Conclusions and Outcomes</td>
<td>50 Marks</td>
</tr>
</tbody>
</table>

Total 500 Marks

Evaluation of Presentation:

<table>
<thead>
<tr>
<th>Presentation of work</th>
<th>100 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication skills</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Question and answer skills</td>
<td>100 Marks</td>
</tr>
</tbody>
</table>

Total 250 Marks

22. **Award of Ranks**

Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the M.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the M. Pharm program in minimum prescribed number of years, (two years) for the award of Ranks.

23. **Award of degree**

Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

24. **Duration for completion of the program of study**

The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

25. **Revaluation / Retotaling of answer papers**

There is no provision for revaluation of the answer papers in any examination. However, the candidates can apply for retotaling by paying prescribed fee.

26. **Re-admission after break of study**

Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.
M. PHARM. PHARMACEUTICAL
BIOTECHNOLOGY (MPB)
MODERN PHARMACEUTICAL ANALYSIS (MPA101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know,

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

2. **IR spectroscopy**: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy

3. **Spectrofluorimetry**: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.

4. **Flame emission spectroscopy and Atomic absorption spectroscopy**: Principle, Instrumentation, Interferences and Applications.

5. **NMR spectroscopy**: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.
3 **Mass Spectroscopy:** Principle, Theory, Instrumentation of Mass Spectroscopy, Different types of ionization like electron impact, chemical, field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of Mass spectroscopy **12 Hrs**

4 **Chromatography:** Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following:
 a) Paper chromatography
 b) Thin Layer chromatography
 c) Ion exchange chromatography
 d) Column chromatography
 e) Gas chromatography
 f) High Performance Liquid chromatography
 g) Affinity chromatography **12 Hrs**

5 **Electrophoresis:** Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis
 b) Gel electrophoresis
 c) Capillary electrophoresis
 d) Zone electrophoresis
 e) Moving boundary electrophoresis
 f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

REFERENCES

MICROBIAL AND CELLULAR BIOLOGY (MPB101T)

Scope
This subject is designed to provide the advanced knowledge to the biotechnology students in invaluable areas of advanced microbiology which plays a crucial role in determining its future use and applications in medicine, drug discovery and in pharmaceutical industry.

Objective
At the completion of this course it is expected that the students will get an understanding about the following aspects;

- Importance of Microorganisms in Industry
- Central dogma of molecular biology
- Structure and function of cell and cell communication
- Cell culture technology and its applications in pharmaceutical industries.
- Microbial pathogenesis

THEORY 60Hrs

UNIT I

12Hrs

Microbiology
Introduction – Prokaryotes and Eukaryotes. Bacteria, fungi, actionomyocytes and virus - structure, chemistry and morphology, cultural, physiological and reproductive features. Methods of isolation, cultivation and maintenance of pure cultures. Industrially important microorganisms - examples and applications

UNIT II 12 Hrs

Molecular Biology 05 Hrs
Structure of nucleus and chromosome, Nucleic acids and composition, structure and types of DNA and RNA. Central dogma of molecular biology: Replication, Transcription and transcription.

Gene regulation 02 Hrs
Gene copy number, transcriptional control and translational control.

RNA processing 05 Hrs
Modification and Maturation, RNA splicing, RNA editing, RNA amplification. Mutagenesis and repair mechanisms, types of mutants, application of mutagenesis in stain
improvement, gene mapping of plasmids- types purification and application. Phage genetics, genetic organization, phage mutation and lysogeny.

UNIT III

Cell structure and function

Cell organelles, cytoskeleton & cell movements, basic aspects of cell regulation, bioenergetics and fueling reactions of aerobics and anaerobics, secondary metabolism & its applications. Cell communication, cell cycle and apoptosis, mechanism of cell division. Cell junctions/adhesion and extracellular matrix, germ cells and fertilization, histology - the life and death of cells in tissues.

Cell Cycle and Cytoskeleton

Cell Division and its Regulation, G-Protein Coupled Receptors, Kinases, Nuclear receptors, Cytoskeleton & cell movements, Intermediate Filaments.

Apoptosis and Oncogenes

Programmed Cell Death, Tumor cells, carcinogens & repair.

Differentiation and Developmental Biology

UNIT IV

Principles of microbial nutrition

Physical and chemical environment for microbial growth, Stability and degeneration of microbial cultures.

Growth of animal cells in culture

General procedure for cell culture, Nutrient composition, Primary, established and transformed cell cultures, applications of cell cultures in pharmaceutical industry and research. Growth of viruses in cell culture propagation and enumeration. In vitro screening techniques- cytotoxicity, anti-tumor, anti-viral assays.

UNIT V

Microbial pathology

Identifying the features of pathogenic bacteria, fungi and viruses. Mechanism of microbial pathogenicity, etiology and pathology of common microbial diseases and currently recommended therapies for common bacterial, fungal & viral infections. Mechanism of action of antimicrobial agents and possible sites of chemotherapy.
REFERENCES

BIOPROCESS ENGINEERING AND TECHNOLOGY (MPB102T)

Scope
This paper has been designed to provide the knowledge to the biotechnology students in invaluable areas of bioprocess technology to develop skills to modify, design and operate different types of fermenters, to understand and implement various fermentation procedures, to train students in scale up fermentation operations.

Objective
At the completion of this subject it is expected that students will be able to,

- Understand basics and design of fermentation technology
- Scale up and scale down processing of fermentation technology
- Bioprocessing of the industrially important microbial metabolites for the growth of microorganisms in industries and R & D organizations.
- Regulation governing the manufacturing of biological products
- Understand and conduct fermentation process kinetics.

THEORY 60 Hrs

UNIT I 12 Hrs

Introduction to fermentation technology
Basic principles of fermentation 02 Hrs

Study of the design and operation of bioreactor 04 Hrs
Ancillary parts and function, impeller design and agitation, power requirements on measurements and control of dissolved oxygen, carbon dioxide, temperature, pH and foam.

Types of bioreactor 04 Hrs
CSTR, tower, airlift, bubble column, packed glass bead, hollow fiber, configuration and application

Computer control of fermentation process 02 Hrs
System configuration and application

UNIT II 12 Hrs

Mass transfer and Rheology
Mass transfer 07 Hrs
Theory, diffusional resistance to oxygen requirements of microorganisms, measurements of mass transfer co-efficient and factor affecting them, effects of aeration and agitation on
mass transfer, supply of air, air compressing, cleaning and sterilization of air and plenum ventilation, air sampling and testing standards for air purity.

Rheology
- **05 Hrs**
Rheological properties of fermentation system and their importance in bioprocessing.

UNIT III
- **12 Hrs**

Scale up of fermentation process
- **04 Hrs**
Principles, theoretical considerations, techniques used, media for fermentation, HTST sterilization, advantage and disadvantage, liquid sterilization.

Cultivation and immobilized culture system
- **04 Hrs**
Cultivation system - batch culture, continuous culture, synchronous cultures, fed batch culture. Graphical plot representing the above systems.

Introduction to immobilization
- **04 Hrs**
Techniques, immobilization of whole cell, immobilized culture system to prepare fine chemicals. Immobilization of enzymes and their applications in the industry. Reactors for immobilized systems and perspective of enzyme eengineering.

UNIT IV
- **12 Hrs**

Scale down of fermentation process
- **08 Hrs**
Theory, equipment design and operation, methods of filtration, solvent extraction, chromatographic separation, crystallization turbidity analysis and cell yield determination, metabolic response assay, enzymatic assay, bioautographic techniques and disruption of cells for product recovery.

Isolation, screening
- **04 Hrs**
Primary and secondary, maintenance of stockculture, strain improvement for increased yield.

UNIT V
- **12 Hrs**

Bioprocessing of the industrially important microbial metabolites
- **08 Hrs**
 a. Organic solvents – Alcohol and Glycerol
 b. Organic acids - Citric acids, Lactic acids,
 c. Antibiotics - Penicillin, Streptomycin, Griseofulvin,
 d. Vitamins - B12, Riboflavin and Vitamin C
 e. Amino acids - Glutamic acids, Lysine, Cyclic AMP and GMP
Biosynthetic pathways for some secondary metabolites, microbial transformation of steroids and alkaloids

- **02 Hrs**
Regulation governing the manufacturing of biological products

02 Hrs

REFERENCES

4. Biotol Board, Bioreactor design and product yield, Butterworth and Helhemann publishers.
ADVANCED PHARMACEUTICAL BIOTECHNOLOGY (MPB103T)

Scope
This paper has been designed to provide the knowledge to the students to develop skills of advanced techniques of isolation and purification of enzymes, to enrich students with current status of development of vaccines and economic importance of biotechnology products.

Objective
At the completion of this subject it is expected that students will be able to –

- Understand about the latest technology development in biotechnology technique, tools and their uses in drug and vaccine development.
- Identify appropriate sources of enzymes.
- Understand and perform genetic engineering techniques in gene manipulation, r-DNA technology and gene amplification.
- Understand the overview of pharmacogenomics.
- Learn the regulatory approval process and key regulatory agencies for new drugs, biologics, devices, and drug-device combinations.

THEORY
60 Hrs

UNIT I
12 Hrs

Enzyme Technology
Classification, general properties of enzymes, dynamics of enzymatic activity, sources of enzymes, extraction and purification. Applications pharmaceutical, therapeutic and clinical. Production of amyloglucosidase, glucose isomerase, amylase and trypsin.

UNIT II
12 Hrs

Genetic Engineering
06 Hrs
Techniques of gene manipulation, cloning strategies, procedures, cloning vectors, expression vectors, recombinant selection and screening, expression in E. coli and yeast. Site directed mutagenesis, polymerase chain reaction, and analysis of DNA sequences.

02 Hrs
Gene library and cDNA

01 Hrs
Applications of the above technique in the production of,

03 Hrs
- Regulatory proteins - Interferon, Interleukins
- Blood products - Erythropoietin
- Vaccines - Hepatitis-B
- Hormones - Insulin

UNIT III

12 Hrs

Therapeutic peptides
05 Hrs
Study on controlled and site specified delivery of therapeutic peptides and proteins through various routes of administration.

Transgenic animals
02 Hrs
Production of useful proteins in transgenic animals and gene therapy.

Human Genome
05 Hrs
The human genome project—a brief study, Human chromosome – Structure and classification, chromosomal abnormalities – Syndromes

UNIT IV

12 Hrs

Signal transduction 08 Hrs
Introduction, cell signaling pathways, Ion channels, Sensors and effectors, ON and OFF mechanisms, Spatial and temporal aspects of signaling, cellular process, development, cell cycle and proliferation, neuronal signaling, cell stress, inflammatory responses and cell death, signaling defects and diseases.

Oncogenes
04 Hrs
Introduction, definition, various oncogenes and their proteins.
UNIT V

Microbial Biotransformation

04 Hrs
Biotransformation for the synthesis of chiral drugs and steroids.

Microbial Biodegradation

04 Hrs
Biodegradation of xenobiotics, chemical and industrial wastes,
Production of single-cell protein,
Applications of microbes in environmental monitoring.

Biosensors

04 Hrs
Definition, characteristics of ideal biosensors, types of biosensors, biological recognition elements, transducers, application of biosensors.

REFERENCES

2. Immobilization of cells and enzymes: HosevearKennadycabral& Bicker staff
5. Modern Biotechnology: S.B Primrose
7. Current protocols in Molecular Biology, Vo1.I & II: F.M. Asubel, John wiley Publishers
SEMESTER – I
PRACTICALS (MPB104P)

1. Analysis of Pharmacopoeial compounds and their formulations by UV Vis spectrophotometer
2. Simultaneous estimation of multi component containing formulations by UV spectrophotometry
3. Experiments based on HPLC
4. Experiments based on Gas Chromatography
5. Estimation of riboflavin/quinine sulphate by fluorimetry
6. Estimation of sodium/potassium by flame photometry
7. Isolation and Purification of microorganism from the soil
8. Microbial contamination of Water and biochemical parameters.
9. Determination of Minimum Inhibitory concentration by gradient plate technique and serial dilution method.
10. UV- survival curve and Dark repair
11. Sterility test for pharmaceutical preparations
12. Sub culturing of cells and cytotoxicity assays.
13. Construction of growth curve and determination of specific growth rate and doubling time
14. Fermentation process of alcohol and wine production
15. Fermentation of vitamins and antibiotics
16. Whole cell immobilization engineering
17. Thermal death kinetics of bacteria
18. Replica plating
20. Isolation and estimation of DNA
21. Isolation and estimation of RNA
22. Isolation of plasmids
23. Agarose gel electrophoresis.
24. Transformation techniques
25. SDS – polyacrylamide gel electrophoresis for proteins
26. Polymerase chain reaction technique.
PROTEINS AND PROTEIN FORMULATIONS (MPB201T)

Scope
This course is designed to impart knowledge and skills necessary for knowing fundamental aspects of proteins and their formulations is a part of drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of information for protein formulation and design are provided to help the students to clarify the various biological concepts of protein.

Objective
At the completion of this course it is expected that students will be able to understand,
- Various methods of purification of proteins
- Peptides in drug development
- Protein identification and characterization
- Protein based formulations
- Sequencing proteins

THEORY
60 Hrs

UNIT I
12 Hrs

Protein engineering
Concepts for protein engineering. Isolation and purification of proteins, Stability and activity based approaches of protein engineering, Chemical and Physical Considerations in Protein and Peptide Stability, Different methods for protein engineering, gene shuffling, and direct evolution

UNIT II
12 Hrs

Peptidomimetics
Introduction, classification; Conformationally restricted peptides, design, pseudopeptides, peptidomimetics and transition state analogs; Biologically active template; Amino acid replacements; Peptidomimetics and rational drug design; CADD techniques in peptidomimetics; Development of non peptide peptidomimetics.
UNIT III
12 Hrs

Proteomics
08 Hrs

2-Dimensional gel electrophoresis
04 Hrs
Methods (including IPGs), resolution, reproducibility and image analysis, future developments

UNIT IV
12 Hrs

Protein formulation
Different strategies used in the formulation of DNA and proteins, Analytical and biophysical parameters of proteins and DNA in pre-formulation, Liposomes, Neon-spears, Neon-particulate system, Pegilation, Biological Activity, Biophysical Characterization Techniques, Forced degradation studies of protein.

UNIT V
12 Hrs

Methods of protein sequencing
Various methods of protein sequencing, characterisation, Edman degradation, Tryptic and/or Chymotryptic Peptide Mapping.

REFERENCE
2. Protein Purification – Hand Book – 1998 Amersham pharmacia biotech
IMMUNOTECHNOLOGY (MPB202T)

Scope

This course is designed to impart knowledge on production and engineering of antibodies, the application of antigens, the design of (recombinant) vaccines, strategies for immune intervention, etc. The Immunotechnology - based techniques will be used in the medicine for therapeutics and diagnostics, industries in the production, quality control and quality assurance, and in R&D.

Objective

After this course, the students will be able to:-

- Understand the techniques like immunodiagnostic tests,
- Characterization of lymphocytes, purification of antigens and antibody, etc.
- Access health problems with immunological background;
- Develop approaches for the immune intervention of diseases

THEORY 60 Hrs

UNIT I

12 Hrs

Fundamental aspects of immunology

06 Hrs

Humoral Immunity

03 Hrs
A – Lymphocytes and their activation. Structure and function of immunoglobulins, idiotypes and anti idiotypic antibodies.

Cell mediated Immunity

03 Hrs
Thymus derived lymphocytes (T cells) – their ontogeny and types, MHC complex, antigen presenting cells (APC), mechanisms of T cell activation, macrophages, dendritic cells, langerhans cells, mechanism of phagocytosis
UNIT II
Immune Regulation and Tolerance 08 Hrs
Complement activation and types and their biological functions, cytokines and their role in immune response.

Hypersensitivity 02 Hrs
Hypersensitivity Types I-IV, Hypersensitivity reactions and treatment
Autoimmune diseases 2 Hrs

UNIT III
Vaccine technology 06 Hrs
Vaccine and their types, conventional vaccines, novel methods for vaccine production, antiidiotype vaccine, DNA vaccine, genetically engineered vaccine, iscoms, synthetic peptides, and immunodiagnostics.

Stem cell technology 6Hrs
Stem cell technology and applications to immunology

UNIT IV
Hybridoma Technology 12 Hrs

UNIT V
Immunological Disorder 06 Hrs
Autoimmune disorders and types, pathogenic mechanisms, treatment, experimental models of auto immune diseases, primary and secondary immunodeficiency disorders.

Immunodiagnosis 06 Hrs
Antigen antibody interaction – Precipitation reaction, Agglutination reactions, Principles and applications of ELISA, Radio Immuno Assay, Western blot analysis, immune-
electrophoresis, immuneflorescence, chemiluminescence assay.

References
4. E. Benjamini, Molecular Immunology, 2002.

BIOINFORMATICS AND COMPUTATIONAL BIOTECHNOLOGY (MPB203T)

Scope
This paper has been designed to provide the advanced knowledge to the biotechnology students in invaluable areas of advanced bioinformatics which plays a crucial role in determining its future use and applications in medicine, drug discovery and in pharmaceutical industry.

Objectives
At completion of this course it is expected that the students will be able to understand,
- Usage of computers in developing a new drugs
- Biological concepts for bioinformatics
- Proteins and their diversity
- Various gene finding methods
- Searching the biological databases
- Target searching
- Various methods of drug designing

THEORY
60 Hrs

UNIT I
12Hrs

Introduction to Bioinformatics
04 Hrs
Definition and History of Bioinformatics, Internet and Bioinformatics, Introduction to Data Mining, Applications of Data Mining to Bioinformatics,
Biological Database

08 Hrs

Protein and nucleic acid databases. Structural data bases. Collecting and storing the sequence and Applications of Bioinformatics.

UNIT II

12 Hrs

Sequence analysis

Sequence alignment, pair wise alignment techniques, multiple sequence analysis, multiple sequence alignment; Flexible sequence similarity searching with the FAST3 program package, the use of CLUSTAL W and CLUSTAL X for the multiple sequence alignment. Tools used for sequence analysis.

UNIT III

12 Hrs

Protein informatics

05 Hrs

Introduction; Force field methods; Energ, buried and exposed residues, side chains and neighbours; Fixed regions, hydrogen bonds, mapping properties onto surfaces; Fitting monomers, rms fit of conformers, assigning secondary structures; Sequence alignment methods, evaluation, scoring; Protein completion, backbone construction and side chain addition; Small peptide methodology, software accessibility, building peptides; Protein displays; Substructure manipulations, annealing.

Protein structure prediction

05 Hrs

Protein folding and model generation; Secondary structure prediction, analyzing secondary structures; Protein loop searching, loop generating methods, loop analysis; Homology modeling, concepts of homology modeling, potential applications, description, methodology, homologous sequence identification; Align structures, align model sequence; Construction of variable and conserved regions, threading techniques, Topology fingerprint approach for prediction, evaluation of alternate models; Structure prediction on a mystery sequence, structure aided sequence techniques of structure prediction, structural profiles, alignment algorithms, mutation tables, prediction, validation, sequence based methods of structure prediction, prediction using inverse folding, fold prediction; Significance analysis, scoring techniques, sequence-sequence scoring.

Docking

02 Hrs
Docking problems, methods for protein-ligand docking, validation studies and applications; Screening small molecule databases, docking of combinatorial libraries, input data, analyzing docking results.

UNIT IV
12Hrs

Diversity of Genomes
04Hrs

Completed Genomes
02 Hrs
Bacterium, Nematode, Plant and Human

Evolution of Genomes
04 Hrs
Lateral or Horizontal Transfer among Genomes, Transcriptome and Proteome-General Account

Phylogenetic analysis
02 Hrs
Evolutionary Change in Nucleotide Sequences, Rates and Patterns of Nucleotide Substitution, Models for Nucleotide Substitution, Construction of Phylogenetic Tree, Genome Annotation technique.

UNIT V
12Hrs

Target searching and Drug Designing
Target and lead, timeline for drug development, target discovery, target modulators, \textit{insilico} gene expression, microarray, and lead discovery, libraries of ligands, active site analysis, and prediction of drug quality.

REFERENCE
7. David Posada, Bioinformatics for DNA Sequence Analysis (2008), Humana press.
BIOLOGICAL EVALUATION OF DRUG THERAPY (MPB204T)

Scope

This paper has been designed to provide the knowledge to the biotechnology students to understand the importance of biological and evaluation of drug therapy of biological medicines.

Objective

At the completion of this subject it is expected that students will be able to –
- Understand about the general concept of standardization of biological.
- Understand the importance of transgenic animals and knockout animals.
- Understand the biological medicines in development of various diseases.
- Learn the biological evaluation of drugs in vitro and in vivo

THEORY

60 Hrs

UNIT I

12 Hrs

Biological Standardization

04 Hrs

General principles, Scope and limitation of bio-assay, bioassay of some official drugs.

Preclinical drug evaluation

06 Hrs

Preclinical drug evaluation of its biological activity, potency and toxicity-Toxicity test in animals including acute, sub-acute and chronic toxicity, ED50 and LD50 determination, special toxicity test like teratogenecity and mutagenecity.

Guidelines for toxicity studies

02 Hrs

Various guidelines for toxicity studies. Animal experiments assessing safety of packaging materials.

UNIT II

12 Hrs

Pyrogens

04 Hrs
Pyrogens: Sources, Chemistry and properties of bacterial pyrogens and endotoxins, Official pyrogen tests.

Microbiological assay

04 Hrs

Assay of antibiotics and vitamins.

Biological evaluation of drugs

04 Hrs

Screening and evaluation (including principles of screening, development of models for diseases: *In vivo* models / *In vitro* models / cell line study).

UNIT III

12 Hrs

Biologic Medicines in Development for various diseases —

06 Hrs

By Therapeutic Category

- Genetic Disorders
- Eye Conditions
- Digestive Disorders
- Diabetes/Related Conditions
- Cardiovascular Disease
- Cancer/Related Conditions
- Blood Disorders
- Autoimmune Disorders
- Infectious Diseases
- Neurologic Disorders
- Skin Diseases
- Transplantation

Biologic Medicines in Development for various diseases —

06 Hrs

by Product Category

- Antisense
- Vaccines
- Recombinant Hormones/Proteins
- Monoclonal Antibodies (mAb)
- Interferons
- Growth Factors
- Gene Therapy
UNIT IV
12 Hrs

Regulatory aspects: drugs, biologics and medical devices
04 Hrs
An introduction to the regulations and documents necessary for approval of a medical product.

Regulatory consideration
04 Hrs
Regulatory consideration for pre-clinical testing and clinical testing of drugs, biologics and medical devices.
New Drug Applications for Global Pharmaceutical Product Approvals
04 Hrs

UNIT V
12 Hrs

Bioavailability
06 Hrs
Objectives and consideration in bio-availability studies, Concept of equivalents, Measurements of bio-availability.
Determination of the rate of absorption, Bioequivalence and its importance, Regulatory aspects of bio-availability and bioequivalence studies for conventional dosage forms and controlled drug delivery systems.

Pharmacokinetics
06 Hrs
Pharmacokinetics:- Basic consideration, Pharmacokinetic models, Application of Pharmacokinetics in new drug development and designing of dosage forms and Novel drug delivery systems.

References:
1. Perkins F.T., Hennessen W. Standardization and Control of Biologicals Produced by Recombinant DNA Technology, International Association of Biological Standardization
2. J.H. Burn., Biological Standardization, Oxford University Press
3. Drug Discovery and Evaluation in Pharmacology assay: Vogel
4. Chow, Shein, Ching, Design and analysis of animal studies in pharmaceutical development,
5. Nodine and Siegler, Animal and Clinical pharmacologic Techniques in Drug Evaluation-
6. Screening methods in pharmacology (vol I & II)–R.A. Turner
SEMESTER – II

PRACTICALS (MPB205P)

1. Protein identification
2. Protein characterization
3. Protein biochemistry
4. Recombinant DNA Technology
5. Protein expression
6. Protein formulations
7. Database searching
8. Sequence analysis methods
9. Protein structure prediction
10. Gene annotation methods
11. Phylogenetic analysis
12. Protein, DNA binding studies
13. Preparation of DNA for PCR applications – Isolation, Purity and Quantification
15. Introduction to RT-PCR – working, programming.
16. Primer design using softwares.
17. Gene DNA amplification by random / specific primers.
18. Southern Hybridization
19. Western Blotting
20. Gene transformation