SAURASHTRA UNIVERSITY

Accredited Grade “A”
by NAAC
FACULTY OF PHARMACY

Master of Pharmacy Management (MPM) (Integrated course)

Ordinances & Regulations

Effective from
June 2017
(Five and Half year full time programme)

Department of Pharmaceutical Sciences
Saurashtra University
Rajkot - 360 005
www.saurashtrauniversity.edu
CHAPTER- I: REGULATIONS

1. Short Title and Commencement
These regulations shall be called as “The Revised Regulations for the B. Pharm. Degree Program (CBCS) of the Pharmacy Council of India, New Delhi”. They shall come into effect from the Academic Year 2016-17. The regulations framed are subject to modifications from time to time by Pharmacy Council of India.

2. Minimum qualification for admission

2.1 First year B. Pharm:
Candidate shall have passed 10+2 examination conducted by the respective state/central government authorities recognized as equivalent to 10+2 examination by the Association of Indian Universities (AIU) with English as one of the subjects and Physics, Chemistry, Mathematics (P.C.M) and or Biology (P.C.B / P.C.M.B.) as optional subjects individually. Any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations.

2.2. B. Pharm lateral entry (to third semester):
A pass in D. Pharm. course from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act.

3. Duration of the program
The course of study for B.Pharm shall extend over a period of eight semesters (four academic years) and six semesters (three academic years) for lateral entry students. The curricula and syllabi for the program shall be prescribed from time to time by Pharmacy Council of India, New Delhi.

4. Medium of instruction and examinations
Medium of instruction and examination shall be in English.

5. Working days in each semester
Each semestershall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from December/January to May/June in every calendar year.

6. Attendance and progress
A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.
7. Program/Course credit structure
As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week.

7.1. Credit assignment
7.1.1. Theory and Laboratory courses
Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and/or tutorial (T) hours, and Practical (P) courses consist of hours spent in the laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having three lectures and one tutorial per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

7.2. Minimum credit requirements
The minimum credit points required for award of a B. Pharm. degree is 208. These credits are divided into Theory courses, Tutorials, Practical, Practice School and Project over the duration of eight semesters. The credits are distributed semester-wise as shown in Table IX. Courses generally progress in sequences, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.
The lateral entry students shall get 52 credit points transferred from their D. Pharm program. Such students shall take up additional remedial courses of ‘Communication Skills’ (Theory and Practical) and ‘Computer Applications in Pharmacy’ (Theory and Practical) equivalent to 3 and 4 credit points respectively, a total of 7 credit points to attain 59 credit points, the maximum of I and II semesters.

8. Academic work
A regular record of attendance both in Theory and Practical shall be maintained by the teaching staff of respective courses.
9. Course of study
The course of study for B. Pharm shall include Semester Wise Theory & Practical as given in Table – I to VIII. The number of hours to be devoted to each theory, tutorial and practical course in any semester shall not be less than that shown in Table – I to VIII.

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP101T</td>
<td>Human Anatomy and Physiology I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP102T</td>
<td>Pharmaceutical Analysis I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP103T</td>
<td>Pharmaceuticals I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP104T</td>
<td>Pharmaceutical Inorganic Chemistry– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP105T</td>
<td>Communication skills – Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP106RBT</td>
<td>Remedial Biology/</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP106RMT</td>
<td>Remedial Mathematics – Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP107P</td>
<td>Human Anatomy and Physiology – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP108P</td>
<td>Pharmaceutical Analysis I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP109P</td>
<td>Pharmaceuticals I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP110P</td>
<td>Pharmaceutical Inorganic Chemistry– Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP111P</td>
<td>Communication skills – Practical*</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BP112RBP</td>
<td>Remedial Biology – Practical*</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 32/34\(^{3}/36\(^{4}\) 4 27/29\(^{3}/30\(^{4}\)

*Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.

^Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM) course.

* Non University Examination (NUE)
Table-II: Course of study for semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP201T</td>
<td>Human Anatomy and Physiology II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP202T</td>
<td>Pharmaceutical Organic Chemistry I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP203T</td>
<td>Biochemistry – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP204T</td>
<td>Pathophysiology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP205T</td>
<td>Computer Applications in Pharmacy – Theory *</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BP206T</td>
<td>Environmental sciences – Theory *</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BP207P</td>
<td>Human Anatomy and Physiology II – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP208P</td>
<td>Pharmaceutical Organic Chemistry I– Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP209P</td>
<td>Biochemistry – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP210P</td>
<td>Computer Applications in Pharmacy – Practical*</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

*Non University Examination (NUE)

Table-III: Course of study for semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the course</th>
<th>No. of Hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP 308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP 309T</td>
<td>Management Process and Organizational Behavior</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31</td>
<td>4</td>
<td>27</td>
</tr>
</tbody>
</table>
Table-IV: Course of study for semester IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of Hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP404T</td>
<td>Pharmacology I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP405T</td>
<td>Pharmacognosy and Phytochemistry I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP408P</td>
<td>Pharmacognosy and Phytochemistry I – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP409P</td>
<td>Micro and Macro Economics</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>34</td>
<td>5</td>
<td>31</td>
</tr>
</tbody>
</table>

Table-V: Course of study for semester V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of Hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP501T</td>
<td>Medicinal Chemistry II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP502T</td>
<td>Industrial Pharmacy– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP503T</td>
<td>Pharmacology II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP504T</td>
<td>Pharmacognosy and Phytochemistry II– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP505T</td>
<td>Pharmaceutical Jurisprudence – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP506P</td>
<td>Industrial Pharmacy1 – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP507P</td>
<td>Pharmacology II – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP508P</td>
<td>Pharmacognosy and Phytochemistry II – Practical</td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BP509T</td>
<td>Pharmaceutical Marketing and drug store management</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>5</td>
<td>27</td>
</tr>
</tbody>
</table>
Table-VI: Course of study for semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of Hours</th>
<th>Tutorial</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP601T</td>
<td>Medicinal Chemistry III – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP602T</td>
<td>Pharmacology III – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP603T</td>
<td>Herbal Drug Technology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP604T</td>
<td>Biopharmaceutics and Pharmacokinetics – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP605T</td>
<td>Pharmaceutical Biotechnology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP606T</td>
<td>Quality Assurance – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP607P</td>
<td>Medicinal chemistry III – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP608P</td>
<td>Pharmacology III – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP609P</td>
<td>Herbal Drug Technology – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP610T</td>
<td>Financial Management</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>6</td>
<td>33</td>
</tr>
</tbody>
</table>

Table-VII: Course of study for semester VII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of Hours</th>
<th>Tutorial</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP701T</td>
<td>Instrumental Methods of Analysis – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP702T</td>
<td>Industrial PharmacyII – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP703T</td>
<td>Pharmacy Practice – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP704T</td>
<td>Novel Drug Delivery System – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP705P</td>
<td>Instrumental Methods of Analysis – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP706PS</td>
<td>Practice School*</td>
<td>12</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>BP707T</td>
<td>Material and Operation Management</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>5</td>
<td>27</td>
</tr>
</tbody>
</table>

*Non University Examination (NUE)
Table-VIII: Course of study for semester VIII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP801T</td>
<td>Biostatistics and Research Methodology</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP802T</td>
<td>Social and Preventive Pharmacy</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP803ET</td>
<td>Pharma Marketing Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP804ET</td>
<td>Pharmaceutical Regulatory Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP805ET</td>
<td>Pharmacovigilance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP806ET</td>
<td>Quality Control and Standardization of Herbals</td>
<td>$3 + 3 = 6$</td>
<td>$1 + 1 = 2$</td>
<td>$4 + 4 = 8$</td>
</tr>
<tr>
<td>BP807ET</td>
<td>Computer Aided Drug Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP808ET</td>
<td>Cell and Molecular Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP809ET</td>
<td>Cosmetic Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP810ET</td>
<td>Experimental Pharmacology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP811ET</td>
<td>Advanced Instrumentation Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP812ET</td>
<td>Dietary Supplements and Nutraceuticals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP813PW</td>
<td>Project Work</td>
<td>12</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>BP814T</td>
<td>Human Resource Management</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>27</td>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>

Table-IX: Semester wise credits distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$27/29*/30^{9}$</td>
</tr>
<tr>
<td>II</td>
<td>29</td>
</tr>
<tr>
<td>III</td>
<td>27</td>
</tr>
<tr>
<td>IV</td>
<td>31</td>
</tr>
<tr>
<td>V</td>
<td>29</td>
</tr>
<tr>
<td>VI</td>
<td>29</td>
</tr>
<tr>
<td>VII</td>
<td>27</td>
</tr>
<tr>
<td>VIII</td>
<td>25</td>
</tr>
<tr>
<td>Extracurricular/ Co curricular activities</td>
<td>01*</td>
</tr>
<tr>
<td>Total credit points for the program</td>
<td>$225/227^{9}/228^{*}$</td>
</tr>
</tbody>
</table>

* The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.

*Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics course.

*Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology course.
10. Program Committee

1. The B. Pharm. program shall have a Program Committee constituted by the Head of the institution in consultation with all the Heads of the departments.

2. The composition of the Program Committee shall be as follows:

A senior teacher shall be the Chairperson; One Teacher from each department handling B.Pharm courses; and four student representatives of the program (one from each academic year), nominated by the Head of the institution.

3. Duties of the Program Committee:

i. Periodically reviewing the progress of the classes.
ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.
iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.
iv. Communicating its recommendation to the Head of the institution on academic matters.
v. The Program Committee shall meet at least thrice in a semester preferably at the end of each Sessionalexam (Internal Assessment) and before the end semester exam.

11. Examinations/Assessments

The scheme for internal assessment and end semester examinations is given in Table – X.

11.1. End semester examinations

The End Semester Examinations for each theory and practical coursethrough semesters I to VIII shall be conducted by the university except for the subjects with asterix symbol (*) in table I and II for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the university.
Tables-X: Schemes for internal assessments and end semester examinations semester wise

Semester I

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks</td>
<td>Duration</td>
</tr>
<tr>
<td>BP101T</td>
<td>Human Anatomy and Physiology I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP102T</td>
<td>Pharmaceutical Analysis I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP103T</td>
<td>Pharmaceutics I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP104T</td>
<td>Pharmaceutical Inorganic Chemistry – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP105T</td>
<td>Communication skills – Theory *</td>
<td>5</td>
<td>10</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP106RBT</td>
<td>Remedial Biology/ Mathematics – Theory *</td>
<td>5</td>
<td>10</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP107P</td>
<td>Human Anatomy and Physiology – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP108P</td>
<td>Pharmaceutical Analysis I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP109P</td>
<td>Pharmaceutics I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP110P</td>
<td>Pharmaceutical Inorganic Chemistry – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP111P</td>
<td>Communication skills – Practical *</td>
<td>5</td>
<td>5</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>BP112RBP</td>
<td>Remedial Biology – Practical *</td>
<td>5</td>
<td>5</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70/75/80*</td>
<td>115/125/130*</td>
<td>23/24/26* Hrs</td>
</tr>
</tbody>
</table>

*Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.

*Applicable ONLY for the students studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM) course.

* Non University Examination (NUE)
Semester II

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sessional Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Marks</td>
<td>Duration</td>
</tr>
<tr>
<td>BP201T</td>
<td>Human Anatomy and Physiology II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP202T</td>
<td>Pharmaceutical Organic Chemistry I – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP203T</td>
<td>Biochemistry – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP204T</td>
<td>Pathophysiology – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP205T</td>
<td>Computer Applications in Pharmacy – Theory*</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP206T</td>
<td>Environmental sciences – Theory*</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Hr</td>
<td></td>
</tr>
<tr>
<td>BP207P</td>
<td>Human Anatomy and Physiology II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Hrs</td>
<td></td>
</tr>
<tr>
<td>BP208P</td>
<td>Pharmaceutical Organic Chemistry I – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Hrs</td>
<td></td>
</tr>
<tr>
<td>BP209P</td>
<td>Biochemistry – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Hrs</td>
<td></td>
</tr>
<tr>
<td>BP210P</td>
<td>Computer Applications in Pharmacy – Practical*</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Hrs</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
<td>125</td>
<td>20 Hrs</td>
</tr>
</tbody>
</table>

* The subject experts at college level shall conduct examinations
<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP309T</td>
<td>Management Process and Organizational Behavior</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
<td>115</td>
<td>21</td>
</tr>
</tbody>
</table>
Semester IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III – Theory</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BP402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BP403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BP404T</td>
<td>Pharmacology I – Theory</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BP405T</td>
<td>Pharmacognosy I – Theory</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BP406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>5 10 4 Hr 15 35 4 Hrs</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BP407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>5 10 4 Hrs 15 35 4 Hrs</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BP408P</td>
<td>Pharmacology I – Practical</td>
<td>5 10 4 Hrs 15 35 4 Hrs</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BP409P</td>
<td>Pharmacognosy I – Practical</td>
<td>5 10 4 Hrs 15 35 4 Hrs</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BP410T</td>
<td>Micro and Macro Economics</td>
<td>10 15 1 Hr 25 75 3 Hrs</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80 130 22 Hrs 210 590 34 Hrs</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>
Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the Course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP501T</td>
<td>Medicinal Chemistry II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP502T</td>
<td>Industrial PharmacyI– Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP503T</td>
<td>Pharmacology II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP504T</td>
<td>Pharmacognosy II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP505T</td>
<td>Pharmaceutical Jurisprudence – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP506P</td>
<td>Industrial PharmacyI– Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP507P</td>
<td>Pharmacology II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP508P</td>
<td>Pharmacognosy II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP509T</td>
<td>Pharmaceutical Marketing and drug store management</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>75</td>
<td>120</td>
<td>195</td>
</tr>
</tbody>
</table>
Semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
</tr>
<tr>
<td>BP601T</td>
<td>Medicinal Chemistry III – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP602T</td>
<td>Pharmacology III – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP603T</td>
<td>Herbal Drug Technology – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP604T</td>
<td>Biopharmaceutics and Pharmacokinetics – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP605T</td>
<td>Pharmaceutical Biotechnology– Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP606T</td>
<td>Quality Assurance– Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP607P</td>
<td>Medicinal chemistry III – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP608P</td>
<td>Pharmacology III – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP609P</td>
<td>Herbal Drug Technology – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP610T</td>
<td>Financial Management</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>85</td>
<td>135</td>
<td>17 Hrs</td>
</tr>
<tr>
<td>Course code</td>
<td>Name of the course</td>
<td>Internal Assessment</td>
<td>End Semester Exams</td>
<td>Total Marks</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>Total</td>
</tr>
<tr>
<td>BP701T</td>
<td>Instrumental Methods of Analysis – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP702T</td>
<td>Industrial Pharmacy – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP703T</td>
<td>Pharmacy Practice – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP704T</td>
<td>Novel Drug Delivery System – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP705 P</td>
<td>Instrumental Methods of Analysis – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP706 PS</td>
<td>Practice School*</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP 708T</td>
<td>Material and Operation Management</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
<td>70</td>
<td>140</td>
</tr>
</tbody>
</table>

* The subject experts at college level shall conduct examinations
Semester VIII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP801T</td>
<td>Biostatistics and Research Methodology – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP802T</td>
<td>Social and Preventive Pharmacy – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP803ET</td>
<td>Pharmaceutical Marketing – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP804ET</td>
<td>Pharmaceutical Regulatory Science – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP805ET</td>
<td>Pharmacovigilance – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP806ET</td>
<td>Quality Control and Standardization of Herbals – Theory</td>
<td>10 + 10 = 20</td>
<td>15 + 15 = 30</td>
<td>25 + 25 = 50</td>
</tr>
<tr>
<td>BP807ET</td>
<td>Computer Aided Drug Design – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP808ET</td>
<td>Cell and Molecular Biology – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP809ET</td>
<td>Cosmetic Science – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP810ET</td>
<td>Experimental Pharmacology – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP811ET</td>
<td>Advanced Instrumentation Techniques – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP812PW</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BP813T</td>
<td>Human Resource Management</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

Total 50 75 5 Hrs 125 525 19 Hrs 650
Internal assessment: Continuous mode

The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table-XI: Scheme for awarding internal assessment: Continuous mode

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Theory</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance (Refer Table – XII)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar)</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance (Refer Table – XII)</td>
<td>2</td>
</tr>
<tr>
<td>Based on Practical Records, Regular viva voce, etc.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Table- XII: Guidelines for the allotment of marks for attendance

<table>
<thead>
<tr>
<th>Percentage of Attendance</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>90 – 94</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>85 – 89</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>80 – 84</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Less than 80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

11.2.1. Sessional Exams

Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical Sessional examinations is given below. The average marks of two Sessional exams shall be computed for internal assessment as per the requirements given in tables – X.

Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks. Similarly Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks.

Question paper pattern for theory Sessional examinations

For subjects having University examination

I. Multiple Choice Questions (MCQs) = 10 x 1 = 10
 OR
 Objective Type Questions (5 x 2) = 05 x 2 = 10
 (Answer all the questions)

II. Long Answers (Answer 1 out of 2) = 1 x 10 = 10
II. Short Answers (Answer 2 out of 3) = 2 x 5 = 10

 Total = 30 marks
For subjects having Non University Examination

I. Long Answers (Answer 1 out of 2) = 1 x 10 = 10
II. Short Answers (Answer 4 out of 6) = 4 x 5 = 20

Total = 30 marks

Question paper pattern for practical sessional examinations

I. Synopsis = 10
II. Experiments = 25
III. Viva voce = 05

Total = 40 marks

12. **Promotion and award of grades**

A student shall be declared PASS and eligible for getting grade in a course of B.Pharm. program if he/she secures at least 50% marks in that particular course including internal assessment. For example, to be declared as PASS and to get grade, the student has to secure a minimum of 50 marks for the total of 100 including continuous mode of assessment and end semester theory examination and has to secure a minimum of 25 marks for the total 50 including internal assessment and end semester practical examination.

13. **Carry forward of marks**

In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. **Improvement of internal assessment**

A student shall have the opportunity to improve his/her performance only once in the Sessional exam component of the internal assessment. The re-conduct of the Sessional exam shall be completed before the commencement of next end semester theory examinations.

15. **Re-examination of end semester examinations**

Re-examination of end semester examination shall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.
Table-XIII: Tentative schedule of end semester examinations

<table>
<thead>
<tr>
<th>Semester</th>
<th>For Regular Candidates</th>
<th>For Failed Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, III, V and VII</td>
<td>November / December</td>
<td>May / June</td>
</tr>
<tr>
<td>II, IV, VI and VIII</td>
<td>May / June</td>
<td>November / December</td>
</tr>
</tbody>
</table>

Question paper pattern for end semester theory examinations

For 75 marks paper

I. Multiple Choice Questions (MCQs) = 20 x 1 = 20
 OR
 Objective Type Questions (10 x 2) = 10 x 2 = 20
 (Answer all the questions)

II. Long Answers (Answer 2 out of 3) = 2 x 10 = 20

III. Short Answers (Answer 7 out of 9) = 7 x 5 = 35

Total = 75 marks

For 50 marks paper

I. Long Answers (Answer 2 out of 3) = 2 x 10 = 20

II. Short Answers (Answer 6 out of 8) = 6 x 5 = 30

Total = 50 marks

For 35 marks paper

I. Long Answers (Answer 1 out of 2) = 1 x 10 = 10

II. Short Answers (Answer 5 out of 7) = 5 x 5 = 25

Total = 35 marks

Question paper pattern for end semester practical examinations

I. Synopsis = 5

II. Experiments = 25

III. Viva voce = 5

Total = 35 marks
16. Academic Progression:
No student shall be admitted to any examination unless he/she fulfills the norms given in
6. Academic progression rules are applicable as follows:

A student shall be eligible to carry forward all the courses of I, II and III semesters till the
IV semester examinations. However, he/she shall not be eligible to attend the courses of
V semester until all the courses of I and II semesters are successfully completed.

A student shall be eligible to carry forward all the courses of III, IV and V semesters till
the VI semester examinations. However, he/she shall not be eligible to attend the courses
of VII semester until all the courses of I, II, III and IV semesters are successfully
completed.

A student shall be eligible to carry forward all the courses of V, VI and VII semesters till
the VIII semester examinations. However, he/she shall not be eligible to get the course
completion certificate until all the courses of I, II, III, IV, V and VI semesters are
successfully completed.

A student shall be eligible to get his/her CGPA upon successful completion of the courses
of I to VIII semesters within the stipulated time period as per the norms specified in 26.

A lateral entry student shall be eligible to carry forward all the courses of III, IV and V
semesters till the VI semester examinations. However, he/she shall not be eligible to
attend the courses of VII semester until all the courses of III and IV semesters are
successfully completed.

A lateral entry student shall be eligible to carry forward all the courses of V, VI and VII
semesters till the VIII semester examinations. However, he/she shall not be eligible to get
the course completion certificate until all the courses of III, IV, V and VI semesters are
successfully completed.

A lateral entry student shall be eligible to get his/her CGPA upon successful completion
of the courses of III to VIII semesters within the stipulated time period as per the norms
specified in 26.

Any student who has given more than 4 chances for successful completion of I / III
semester courses and more than 3 chances for successful completion of II / IV semester
courses shall be permitted to attend V / VII semester classes ONLY during the
subsequent academic year as the case may be. In simpler terms there shall NOT be any
ODD BATCH for any semester.
Note: Grade AB should be considered as failed and treated as one head for deciding academic progression. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

17. Grading of performances
17.1. Letter grades and grade points allocations:
Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – XII.

<table>
<thead>
<tr>
<th>Percentage of Marks Obtained</th>
<th>Letter Grade</th>
<th>Grade Point</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00 – 100</td>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
</tr>
<tr>
<td>80.00 – 89.99</td>
<td>A</td>
<td>9</td>
<td>Excellent</td>
</tr>
<tr>
<td>70.00 – 79.99</td>
<td>B</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>60.00 – 69.99</td>
<td>C</td>
<td>7</td>
<td>Fair</td>
</tr>
<tr>
<td>50.00 – 59.99</td>
<td>D</td>
<td>6</td>
<td>Average</td>
</tr>
<tr>
<td>Less than 50</td>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Absent</td>
<td>AB</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>

A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

18. The Semester grade point average (SGPA)
The performance of a student in a semester is indicated by a number called ‘Semester Grade Point Average’ (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3, C4 and C5 and the student’s grade points in these courses are G1, G2, G3, G4 and G5, respectively, and then students’ SGPA is equal to:

\[
SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5}
\]

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and AB grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:
\[\text{SGPA} = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4 \cdot \text{ZERO} + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5} \]

19. Cumulative Grade Point Average (CGPA)

The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/ final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s) is/ are passed. When the course(s) is/ are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

\[\text{CGPA} = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4 + C_5S_5 + C_6S_6 + C_7S_7 + C_8S_8}{C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8} \]

where \(C_1, C_2, C_3, \ldots\) is the total number of credits for semester I, II, III, \ldots and \(S_1, S_2, S_3, \ldots\) is the SGPA of semester I, II, III, \ldots.

20. Declaration of class

The class shall be awarded on the basis of CGPA as follows:

- First Class with Distinction = CGPA of 7.50 and above
- First Class = CGPA of 6.00 to 7.49
- Second Class = CGPA of 5.00 to 5.99

21. Project work

All the students shall undertake a project under the supervision of a teacher and submit a report. The area of the project shall directly relate any one of the elective subject opted by the student in semester VIII. The project shall be carried out in group not exceeding 5 in number. The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students). The projects shall be evaluated as per the criteria given below.
Evaluation of Dissertation Book:

<table>
<thead>
<tr>
<th>Objective(s) of the work done</th>
<th>15 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology adopted</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Conclusions and Outcomes</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

Total 75 Marks

Evaluation of Presentation:

<table>
<thead>
<tr>
<th>Presentation of work</th>
<th>25 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication skills</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Question and answer skills</td>
<td>30 Marks</td>
</tr>
</tbody>
</table>

Total 75 Marks

Explanation: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria.

22. Industrial training (Desirable)

Every candidate shall be required to work for at least 150 hours spread over four weeks in a Pharmaceutical Industry/Hospital. It includes Production unit, Quality Control department, Quality Assurance department, Analytical laboratory, Chemical manufacturing unit, Pharmaceutical R&D, Hospital (Clinical Pharmacy), Clinical Research Organization, Community Pharmacy, etc. After the Semester – VI and before the commencement of Semester – VII, and shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the head of the institute.

23. Practice School

In the VII semester, every candidate shall undergo practice school for a period of 150 hours evenly distributed throughout the semester. The student shall opt any one of the domains for practice school declared by the program committee from time to time.

At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages). Along with the exams of semester VII, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college leveland grade point shall be awarded.

24. Award of Ranks
Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the B.Pharm program shall not be eligible for award of ranks. Moreover, the candidates should have completed the B. Pharm program in minimum prescribed number of years, (four years) for the award of Ranks.

25. Award of degree
Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

26. Duration for completion of the program of study
The duration for the completion of the program shall be fixed as double the actual duration of the program and the students have to pass within the said period, otherwise they have to get fresh Registration.

27. Re-admission after break of study
Candidate who seeks re-admission to the program after break of study has to get the approval from the university by paying a condonation fee.
No condonation is allowed for the candidate who has more than 2 years of break up period and he/she has to rejoin the program by paying the required fees.
CHAPTER - II: SYLLABUS
Semester I
Semester – I
HUMAN ANATOMY AND PHYSIOLOGY-I
Subject code: BP101T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to

1. Explain the gross morphology, structure and functions of various organs of the human body.
2. Describe the various homeostatic mechanisms and their imbalances.
3. Identify the various tissues and organs of different systems of human body.
4. Perform the various experiments related to special senses and nervous system.
5. Appreciate coordinated working pattern of different organs of each system

Course Content:

Unit I

- **Introduction to human body**
 Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology.

- **Cellular level of organization**
 Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signaling pathway activation by extracellular signal molecule, Forms of intracellular signaling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine

- **Tissue level of organization**
 Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues.

Unit II

- **Integumentary system**

10 Hours
Structure and functions of skin

- **Skeletal system**
 Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system, Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction

- **Joints**
 Structural and functional classification, types of joints movements and its articulation

Unit III

10 hours

- **Body fluids and blood**
 Body fluids, composition and functions of blood, hemopoeisis, formation of hemoglobin, anemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticulo endothelial system.

- **Lymphatic system**
 Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system

Unit IV

08 hours

- **Peripheral nervous system:**
 Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system. Origin and functions of spinal and cranial nerves.

- **Special senses**
 Structure and functions of eye, ear, nose and tongue and their disorders.

Unit V

07 hours

- **Cardiovascular system**
 Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, electrocardiogram and disorders of heart.
107P. HUMAN ANATOMY AND PHYSIOLOGY (Practical) 4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. Study of compound microscope.
2. Microscopic study of epithelial and connective tissue
3. Microscopic study of muscular and nervous tissue
4. Identification of axial bones
5. Identification of appendicular bones
6. Introduction to hemocytometry.
7. Enumeration of white blood cell (WBC) count
8. Enumeration of total red blood corpuscles (RBC) count
9. Determination of bleeding time
10. Determination of clotting time
11. Estimation of hemoglobin content
12. Determination of blood group.
13. Determination of erythrocyte sedimentation rate (ESR).
15. Recording of blood pressure.

Recommended Books (Latest Editions)

3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
6. Textbook of Human Histology by Inderbir Singh, Jaypee brother’s medical publis
7. hers, New Delhi.
8. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother’s medical publishers, New Delhi.

Reference Books (Latest Editions)

1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterjee ,Academic Publishers Kolkata
Semester – I
PHARMACEUTICAL ANALYSIS I
Subject code: BP102T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs.

Objectives: Upon completion of the course student shall be able to

- understand the principles of volumetric and electro chemical analysis
- carryout various volumetric and electrochemical titrations
- develop analytical skills

Course Content:

UNIT-I
10 Hours

(a) **Pharmaceutical analysis:** Definition and scope
 i) Different techniques of analysis
 ii) Methods of expressing concentration
 iii) Primary and secondary standards.
 iv) Preparation and standardization of various molar and normal solutions- Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate

(b) **Errors:** Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures

(c) **Pharmacopoeia,** Sources of impurities in medicinal agents, limit tests.

UNIT-II
10 Hours

- **Acid base titration:** Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves
- **Non aqueous titration:** Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl

UNIT-III
10 Hours

- **Precipitation titrations:** Mohr’s method, Volhard’s,
Modified Volhard’s, Fajans method, estimation of sodium chloride.

- **Complexometric titration**: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate.
- Basic Principles, methods and application of diazotisation titration.

UNIT-IV

Redox titrations

(a) Concepts of oxidation and reduction

(b) Types of redox titrations (Principles and applications)

Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate

UNIT-V

- **Electrochemical methods of analysis**
 - **Conductometry** - Introduction, Conductivity cell, Conductometric titrations, applications.
 - **Potentiometry** - Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
 - **Polarography** - Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications

BP108P. PHARMACEUTICAL ANALYSIS (Practical)

4 Hours / Week

I **Limit Test of the following**

(1) Chloride
(2) Sulphate
(3) Iron
(4) Arsenic

II **Preparation and standardization of**

(1) Sodium hydroxide
(2) Sulphuric acid
(3) Sodium thiosulfate
(4) Potassium permanganate
(5) Ceric ammonium sulphate

III Assay of the following compounds along with Standardization of Titrant
(1) Ammonium chloride by acid base titration
(2) Ferrous sulphate by Cerimetry
(3) Copper sulphate by Iodometry
(4) Calcium gluconate by complexometry
(5) Hydrogen peroxide by Permanganometry
(6) Sodium benzoate by non-aqueous titration
(7) Sodium Chloride by precipitation titration

IV Determination of Normality by electro-analytical methods
(1) Conductometric titration of strong acid against strong base
(2) Conductometric titration of strong acid and weak acid against strong base
(3) Potentiometric titration of strong acid against strong base

Recommended Books: (Latest Editions)

2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
4. Bentley and Driver's Textbook of Pharmaceutical Chemistry
5. John H. Kennedy, Analytical chemistry principles
6. Indian Pharmacopoeia.
Scope: This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms.

Objectives: Upon completion of this course the student should be able to:

- Know the history of profession of pharmacy
- Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations
- Understand the professional way of handling the prescription
- Preparation of various conventional dosage forms

Course Content:

UNIT – I

- **Historical background and development of profession of pharmacy**: History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia.
- **Dosage forms**: Introduction to dosage forms, classification and definitions
- **Prescription**: Definition, Parts of prescription, handling of Prescription and Errors in prescription.
- **Posology**: Definition, Factors affecting posology. Pediatric dose calculations based on age, body weight and body surface area.

UNIT – II

- **Pharmaceutical calculations**: Weights and measures – Imperial & Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight.
- **Powders**: Definition, classification, advantages and disadvantages, Simple & compound powders – official preparations, dusting powders, effervescent, efflorescent and hygroscopic powders, eutectic mixtures. Geometric dilutions.
- **Liquid dosage forms**: Advantages and disadvantages of liquid dosage forms.

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques.

UNIT – III 08 Hours
- **Monophasic liquids**: Definitions and preparations of Gargles, Mouthwashes, Throat Paint, Eardrops, Nasal drops, Enemas, Syrups, Elixirs, Liniments and Lotions.
- **Biphasic liquids**:
- **Suspensions**: Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension & stability problems and methods to overcome.
- **Emulsions**: Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation & stability problems and methods to overcome.

UNIT – IV 08 Hours
- **Suppositories**: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories.
- **Pharmaceutical incompatibilities**: Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

UNIV – V 07 Hours
- **Semisolid dosage forms**: Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms
BP109P. PHARMACEUTICS I (Practical)

1. Syrups
 a) Syrup IP’66
 b) Compound syrup of Ferrous Phosphate BPC’68

2. Elixirs
 a) Piperazine citrate elixir
 b) Paracetamol pediatric elixir

3. Linctus
 a) Terpin Hydrate Linctus IP’66
 b) Iodine Throat Paint (Mandles Paint)

4. Solutions
 a) Strong solution of ammonium acetate
 b) Cresol with soap solution
 c) Lugol’s solution

5. Suspensions
 a) Calamine lotion
 b) Magnesium Hydroxide mixture
 c) Aluminium Hydroxide gel

6. Emulsions
 a) Turpentine Liniment
 b) Liquid paraffin emulsion

7. Powders and Granules
 a) ORS powder (WHO)
 b) Effervescent granules
 c) Dusting powder
 d) Divided powders

8. Suppositories
 a) Glycero gelatin suppository
 b) Coca butter suppository
 c) Zinc Oxide suppository

8. Semisolids
 a) Sulphur ointment
 b) Non staining-iodine ointment with methyl salicylate
 c) Carbopal gel
9. Gargles and Mouthwashes
 a) Iodine gargle
 b) Chlorhexidine mouth wash

Recommended Books: (Latest Editions)

2. Carter S.J., Cooper and Gunn’s-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
4. Indian pharmacopoeia.
5. British pharmacopoeia.
9. E.A. Rawlins, Bentley’s Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.
Semester – I
PHARMACEUTICAL INORGANIC CHEMISTRY
Subject code: BP104T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals.

Objectives: Upon completion of course student shall be able to

- know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals
- understand the medicinal and pharmaceutical importance of inorganic compounds

Course Content:

UNIT I

- Impurities in pharmaceutical substances: History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate

General methods of preparation, assay for the compounds superscripted with asterisk (*), properties and medicinal uses of inorganic compounds belonging to the following classes

UNIT II

- Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.

- Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.

- Dental products: Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc
- eugenol cement.
UNIT III

- **Gastrointestinal agents**
 Acidifiers: Ammonium chloride* and Dil. HCl
 Antacid: Ideal properties of antacids, combinations of antacids, Sodium
 Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture
 Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite
 Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations

UNIT IV

- **Miscellaneous compounds**
 Expectorants: Potassium iodide, Ammonium chloride*.
 Emetics: Copper sulphate*, Sodium potassium tartarate
 Haematinics: Ferrous sulphate*, Ferrous gluconate
 Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite333
 Astringents: Zinc Sulphate, Potash Alum

UNIT V

BP110P. PHARMACEUTICAL INORGANIC CHEMISTRY (Practical)

4 Hours / Week

I Limit tests for following ions
- Limit test for Chlorides and Sulphates
- Modified limit test for Chlorides and Sulphates
- Limit test for Iron
- Limit test for Heavy metals
- Limit test for Lead
- Limit test for Arsenic

II Identification test
- Magnesium hydroxide
- Ferrous sulphate
- Sodium bicarbonate
- Calcium gluconate
- Copper sulphate

III Test for purity
- Swelling power of Bentonite
- Neutralizing capacity of aluminum hydroxide gel
- Determination of potassium iodate and iodine in potassium iodide

IV Preparation of inorganic pharmaceuticals
- Boric acid
- Potash alum
- Ferrous sulphate

Recommended Books (Latest Editions)

2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
4. M.L Schroff, Inorganic Pharmaceutical Chemistry
5. Bentley and Driver's Textbook of Pharmaceutical Chemistry
7. Indian Pharmacopoeia
Semester – I
COMMUNICATION SKILLS
Subject code: BP105T
Theory (2 Hours / Week; 2 Credits, 30 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Scope: This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business.

Objectives:

Upon completion of the course the student shall be able to

1. Understand the behavioral needs for a Pharmacist to function effectively in the areas of pharmaceutical operation
2. Communicate effectively (Verbal and Non Verbal)
3. Effectively manage the team as a team player
4. Develop interview skills
5. Develop Leadership qualities and essentials

Course content:

UNIT –I
07 Hours

- **Communication Skills:** Introduction, Definition, The Importance of Communication, The Communication Process – Source, Message, Encoding, Channel, Decoding, Receiver, Feedback, Context

- **Barriers to communication:** Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers

- **Perspectives in Communication:** Introduction, Visual Perception, Language, Other factors affecting our perspective - Past Experiences, Prejudices, Feelings, Environment

UNIT –II
07 Hours

- **Elements of Communication:** Introduction, Face to Face Communication - Tone of Voice, Body Language (Non-verbal communication), Verbal
Communication, Physical Communication

- **Communication Styles:** Introduction, The Communication Styles Matrix with example for each - Direct Communication Style, Spirited Communication Style, Systematic Communication Style, Considerate Communication Style

UNIT – III 07 Hours

- **Basic Listening Skills:** Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations

- **Effective Written Communication:** Introduction, When and When Not to Use Written Communication - Complexity of the Topic, Amount of Discussion’ Required, Shades of Meaning, Formal Communication

- **Writing Effectively:** Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message

UNIT – IV 05 Hours

- **Interview Skills:** Purpose of an interview, Do’s and Don’t’s of an interview

- **Giving Presentations:** Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery

UNIT – V 04 Hours

- **Group Discussion:** Introduction, Communication skills in group discussion, Do’s and Don’t’s of group discussion

BP111P.COMMUNICATION SKILLS (Practical)

2 Hours / week

The following learning modules are to be conducted using wordsworth® English language lab software

Basic communication covering the following topics

Meeting People

Asking Questions

Making Friends

What did you do?

Do’s and Don’t’s
Pronunciations covering the following topics

Pronunciation (Consonant Sounds)
Pronunciation and Nouns
Pronunciation (Vowel Sounds)

Advanced Learning
Listening Comprehension / Direct and Indirect Speech
Figures of Speech
Effective Communication
Writing Skills
Effective Writing
Interview Handling Skills
E-Mail etiquette
Presentation Skill

Recommended Books: (Latest Edition)
6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, 1st Edition Universe of Learning LTD, 2010
Semester – I
REMEDIAL BIOLOGY
Subject code: BP106RBT
Theory (2 Hours / Week; 2 Credits, 30 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Scope: To learn and understand the components of living world, structure and functional system of plant and animal kingdom.

Objectives: Upon completion of the course, the student shall be able to
- know the classification and salient features of five kingdoms of life
- understand the basic components of anatomy & physiology of plant
- know understand the basic components of anatomy & physiology animal with special reference to human

UNIT I
07 Hours

Living world:
- Definition and characters of living organisms
- Diversity in the living world
- Binomial nomenclature
- Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus,

Morphology of Flowering plants
- Morphology of different parts of flowering plants – Root, stem, inflorescence, flower, leaf, fruit, seed.
- General Anatomy of Root, stem, leaf of monocotyledons & Dicotyledones.

UNIT II
07 Hours

Body fluids and circulation
- Composition of blood, blood groups, coagulation of blood
- Composition and functions of lymph
- Human
- circulatory system
- Structure of human heart and blood vessels
- Cardiac cycle, cardiac output and ECG

Digestion and Absorption
• Human alimentary canal and digestive glands
• Role of digestive enzymes
• Digestion, absorption and assimilation of digested food

Breathing and respiration
• Human respiratory system
• Mechanism of breathing and its regulation
• Exchange of gases, transport of gases and regulation of respiration
• Respiratory volumes

UNIT III

07 Hours

Excretory products and their elimination
• Modes of excretion
• Human excretory system- structure and function
• Urine formation
• Rennin angiotensin system

Neural control and coordination
• Definition and classification of nervous system
• Structure of a neuron
• Generation and conduction of nerve impulse
• Structure of brain and spinal cord
• Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata

Chemical coordination and regulation
• Endocrine glands and their secretions
• Functions of hormones secreted by endocrine glands

Human reproduction
• Parts of female reproductive system
• Parts of male reproductive system
• Spermatogenesis and Oogenesis
• Menstrual cycle

UNIT IV

05 Hours

Plants and mineral nutrition:
• Essential mineral, macro and micronutrients
• Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation

Photosynthesis
• Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis.

UNIT V

04 Hours
Plant respiration: Respiration, glycolysis, fermentation (anaerobic).

Plant growth and development
- Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators

Cell - The unit of life
- Structure and functions of cell and cell organelles. Cell division

Tissues
- Definition, types of tissues, location and functions.

Text Books
- b. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books
- a. A Text book of Biology by B.V. Sreenivasa Naidu
- b. A Text book of Biology by Naidu and Murthy
- c. Botany for Degree students By A.C. Dutta.
- d. Outlines of Zoology by M. Ekambaranatha ayyer and T. N. Ananthakrishnan.
- e. A manual for pharmaceutical biology practical by S.B. Gokhale and C. K. Kokate

BP112RBP.REMEDIAL BIOLOGY (Practical)

1. Introduction to experiments in biology
 - a) Study of Microscope
 - b) Section cutting techniques
 - c) Mounting and staining
 - d) Permanent slide preparation
2. Study of cell and its inclusions
3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications
4. Detailed study of frog by using computer models
5. Microscopic study and identification of tissues pertinent to Stem, Root Leaf, seed, fruit and flower
6. Identification of bones
7. Determination of blood group
8. Determination of blood pressure
9. Determination of tidal volume
Reference Books

Semester – I
REMEDIAL MATHEMATICS
Subject code: BP106RMT
Theory (2 Hours / Week; 2 Credits, 30 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>Theory</td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>External</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Scope: This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.

Objectives: Upon completion of the course the student shall be able to:-

1. Know the theory and their application in Pharmacy
2. Solve the different types of problems by applying theory
3. Appreciate the important application of mathematics in Pharmacy

Course Content:

UNIT – I 06 Hours

- **Partial fraction**
 Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction, Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics

- **Logarithms**
 Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

- **Function:**
 Real Valued function, Classification of real valued functions,

- **Limits and continuity:**
 Introduction, Limit of a function, Definition of limit of a function (\(\varepsilon - \delta \) definition), \(\lim_{x \to a} x^n - a = na^{n-1} \), \(\lim_{x \to a} x - a \), \(\lim_{\theta \to 0} \sin \theta = 1 \), \(\lim_{\theta \to 0} \theta \)
UNIT – II

Matrices and Determinant:
Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer’s rule, Characteristic equation and roots of a square matrix, Cayley–Hamilton theorem, Application of Matrices in solving Pharmacokinetic equations

UNIT – III

Calculus
Differentiation: Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – Without Proof. Derivative of \(x^n \) w.r.t., where \(n \) is any rational number, Derivative of \(e^x \), Derivative of \(\log x \), Derivative of \(a^x \). Derivative of trigonometric functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application

UNIT – IV

Analytical Geometry
Introduction: Signs of the Coordinates, Distance formula, Straight Line: Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line
Integration:
Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application

UNIT – V

Differential Equations: Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations
Recommended Books (Latest Edition)

1. Differential Calculus by Shanthinarayan
2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
3. Integral Calculus by Shanthinarayan
4. Higher Engineering Mathematics by Dr. B.S. Grewal
Semester II
Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to:

1. Explain the gross morphology, structure and functions of various organs of the human body.
2. Describe the various homeostatic mechanisms and their imbalances.
3. Identify the various tissues and organs of different systems of human body.
4. Perform the hematological tests like blood cell counts, haemoglobin estimation, bleeding/clotting time etc and also record blood pressure, heart rate, pulse and respiratory volume.
5. Appreciate coordinated working pattern of different organs of each system
6. Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body.

Course Content:

Unit I

- **Nervous system**
 Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters.
 Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid, structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts, reflex activity)

Unit II

- **Digestive system**
 Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through
parasympathetic nervous system, pepsin role in protein digestion) small intestine and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT.

- **Energetics**

 Formation and role of ATP, Creatinine Phosphate and BMR.

Unit III

- **Respiratory system**

 Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration

 Lung Volumes and capacities transport of respiratory gases, artificial respiration, and resuscitation methods.

- **Urinary system**

Unit IV

- **Endocrine system**

 Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal gland, pancreas, pineal gland, thymus and their disorders.

Unit V

- **Reproductive system**

 Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition

- **Introduction to genetics**

 Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance
BP 207 P. HUMAN ANATOMY AND PHYSIOLOGY-II (Practical)

4 Hours/week

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. To study the integumentary and special senses using specimen, models, etc.,
2. To study the nervous system using specimen, models, etc.,
3. To study the endocrine system using specimen, models, etc
4. To demonstrate the general neurological examination
5. To demonstrate the function of olfactory nerve
6. To examine the different types of taste.
7. To demonstrate the visual acuity
8. To demonstrate the reflex activity
9. Recording of body temperature
10. To demonstrate positive and negative feedback mechanism.
11. Determination of tidal volume and vital capacity.
12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens.
13. Recording of basal mass index
15. Demonstration of total blood count by cell analyser
16. Permanent slides of vital organs and gonads.

Recommended Books (Latest Editions)

3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co,Riverview,MIUSA
8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother’s medical publishers, New Delhi.

Reference Books:
1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterjee, Academic Publishers Kolkata
Semester – II
PHARMACEUTICAL ORGANIC CHEMISTRY –I
Subject code: BP202T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions.

Objectives: Upon completion of the course the student shall be able to

1. write the structure, name and the type of isomerism of the organic compound
2. write the reaction, name the reaction and orientation of reactions
3. account for reactivity/stability of compounds,
4. identify/confirm the identification of organic compound

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT-I 07 Hours

• Classification, nomenclature and isomerism
 Classification of Organic Compounds
 Common and IUPAC systems of nomenclature of organic compounds (up to 10 Carbons open chain and carbocyclic compounds) Structural isomerisms in organic compounds

UNIT-II 10 Hours

• Alkanes*, Alkenes* and Conjugated dienes*
 SP³ hybridization in alkanes, Halogenation of alkanes, uses of paraffins. Stabilities of alkenes, SP² hybridization in alkenes
E₁ and E₂ reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocations, Saytzeff’s orientation and evidences. E₁ versus E₂ reactions, Factors affecting E₁ and E₂ reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff’s orientation, free radical addition reactions of alkenes, Anti Markownikoff’s orientation.

Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement

UNIT-III 10 Hours

• **Alkyl halides***
 SN₁ and SN₂ reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocations.
 SN₁ versus SN₂ reactions, Factors affecting SN₁ and SN₂ reactions
 Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene, dichloromethane, tetrachloromethane and iodoform.

• **Alcohols*** - Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, Cetosteryl alcohol, Benzyl alcohol, Glycerol, Propylene glycol

UNIT-IV 10 Hours

• **Carbonyl compounds*** (Aldehydes and ketones)
 Nucleophilic addition, Electromeric effect, aldol condensation, Crossed Aldol condensation, Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde, Acetone, Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde.

UNIT-V 08 Hours

• **Carboxylic acids***
 Acidity of carboxylic acids, effect of substituents on acidity, inductive effect and qualitative tests for carboxylic acids, amide and ester
 Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid. Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid

• **Aliphatic amines*** - Basicity, effect of substituent on Basicity, Qualitative test, Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine
BP208P. PHARMACEUTICAL ORGANIC CHEMISTRY - I (Practical)

4 Hours / week

1. Systematic qualitative analysis of unknown organic compounds like
 1. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and unsaturation, etc.
 2. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne’s test
 3. Solubility test
 5. Melting point/Boiling point of organic compounds
 6. Identification of the unknown compound from the literature using melting point/boiling point.
 7. Preparation of the derivatives and confirmation of the unknown compound by melting point/boiling point.
 8. Minimum 5 unknown organic compounds to be analysed systematically.

2. Preparation of suitable solid derivatives from organic compounds

3. Construction of molecular models

Recommended Books (Latest Editions)
1. Organic Chemistry by Morrison and Boyd
2. Organic Chemistry by I.L. Finar, Volume-I
4. Organic Chemistry by P.L.Soni
5. Practical Organic Chemistry by Mann and Saunders.
8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
9. Reaction and reaction mechanism by Ahluwalia/Chatwal.
Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero & autocatalytic functions of DNA.

Objectives: Upon completion of course student shall able to

1. Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
2. Understand the metabolism of nutrient molecules in physiological and pathological conditions.
3. Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Course Content:

UNIT I 08 Hours

- **Biomolecules**
 Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins.

- **Bioenergetics**
 Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential.
 Energy rich compounds; classification; biological significances of ATP and cyclic AMP

UNIT II 10 Hours

- **Carbohydrate metabolism**
 Glycolysis – Pathway, energetics and significance Citric acid cycle-Pathway, energetics and significance
 HMP shunt and its significance; Glucose-6-Phosphate dehydrogenase (G6PD) deficiency
 Glycogen metabolism Pathways and glycogen storage diseases
UNIT IV

- **Nucleic acid metabolism and genetic information transfer**
 - Biosynthesis of purine and pyrimidine nucleotides
 - Catabolism of purine nucleotides and Hyperuricemia and Gout disease
 - Organization of mammalian genome
 - Structure of DNA and RNA and their functions
 - DNA replication (semi conservative model)
 - Transcription or RNA synthesis
 - Genetic code, Translation or Protein synthesis and inhibitors

UNIT III

- **Lipid metabolism**
 - β-Oxidation of saturated fatty acid (Palmitic acid)
 - Formation and utilization of ketone bodies; ketoacidosis De novo synthesis of fatty acids (Palmitic acid)
 - Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D
 - Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity.

- **Amino acid metabolism**
 - General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle and its disorders
 - Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenylketonuria, Albinism, alkeptonuria, tyrosinemia)
 - Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline
 - Catabolism of heme; hyperbilirubinemia and jaundice

UNIT III

- **Biological oxidation**
 - Electron transport chain (ETC) and its mechanism.
 - Oxidative phosphorylation & its mechanism and substrate phosphorylation, Inhibitors ETC and oxidative phosphorylation/Uncouplers level

UNIT III

- **10 Hours**
UNIT V

- **Enzymes**
 - Introduction, properties, nomenclature and IUB classification of enzymes
 - Enzyme kinetics (Michaelis plot, Line Weaver Burke plot)
 - Enzyme inhibitors with examples
 - Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation
 - Therapeutic and diagnostic applications of enzymes and isoenzymes
 - Coenzymes – Structure and biochemical functions

BP 209 P. BIOCHEMISTRY (Practical)

4 Hours / Week

1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch)
2. Identification tests for Proteins (albumin and Casein)
3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method)
4. Qualitative analysis of urine for abnormal constituents
5. Determination of blood creatinine
6. Determination of blood sugar
7. Determination of serum total cholesterol
8. Preparation of buffer solution and measurement of pH
9. Study of enzymatic hydrolysis of starch
10. Determination of Salivary amylase activity
11. Study the effect of Temperature on Salivary amylase activity.
12. Study the effect of substrate concentration on salivary amylase activity.
Recommended Books (Latest Editions)

4. Biochemistry by D. Satyanarayan and U.Chakrapani
7. Outlines of Biochemistry by Conn and Stumpf
10. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna.
11. Practical Biochemistry by Harold Varley.
Semester – II
PATHOPHYSIOLOGY
Subject code: BP204T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively.

Objectives: Upon completion of the subject student shall be able to –
1. Describe the etiology and pathogenesis of the selected disease states;
2. Name the signs and symptoms of the diseases; and
3. Mention the complications of the diseases.

Course content:

Unit I 10Hours

- **Basic principles of Cell injury and Adaptation:**
 Introduction, definitions, Homeostasis, Components and Types of Feedback systems, Causes of cellular injury, Pathogenesis (Cell membrane damage, Mitochondrial damage, Ribosome damage, Nuclear damage), Morphology of cell injury – Adaptive changes (Atrophy, Hypertrophy, hyperplasia, Metaplasia, Dysplasia), Cell swelling, Intra cellular accumulation, Calcification, Enzyme leakage and Cell Death Acidosis & Alkalosis, Electrolyte imbalance

- **Basic mechanism involved in the process of inflammation and repair:**
 Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC’s, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis
Unit II

- **Cardiovascular System:** Hypertension, congestive heart failure, ischemic heart disease (angina, myocardial infarction, atherosclerosis and arteriosclerosis)
- **Respiratory system:** Asthma, Chronic obstructive airways diseases.
- **Renal system:** Acute and chronic renal failure.

Unit II

- **Haematological Diseases:** Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia
- **Endocrine system:** Diabetes, thyroid diseases, disorders of sex hormones
- **Nervous system:** Epilepsy, Parkinson’s disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer’s disease.
- **Gastrointestinal system:** Peptic Ulcer

Unit IV

- Inflammatory bowel diseases, jaundice, hepatitis (A,B,C,D,E,F) alcoholic liver disease.
- **Disease of bones and joints:** Rheumatoid arthritis, osteoporosis and gout
- **Principles of cancer:** classification, etiology and pathogenesis of cancer
- **Diseases of bones and joints:** Rheumatoid Arthritis, Osteoporosis, Gout
- **Principles of Cancer:** Classification, etiology and pathogenesis of Cancer

Unit V

- **Infectious diseases:** Meningitis, Typhoid, Leptosy, Tuberculosis Urinary tract infections
- **Sexually transmitted diseases:** AIDS, Syphilis, Gonorrhea

Recommended Books (Latest Editions)

1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins & Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier; 2014.
4. Best, Charles Herbert 1899-1978; Taylor, Norman Burke 1885-1972; West, John B (John Burnard); Best and Taylor’s Physiological basis of medical practice; 12th ed; united states;
5. William and Wilkins, Baltimore; 1991 [1990 printing].
6. Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston; Davidson’s Principles and Practice
9. V. Kumar, R. S. Cotran and S. L. Robbins; Basic Pathology; 6th edition; Philadelphia; WB Saunders Company; 1997.

Recommended Journals
1. The Journal of Pathology. ISSN: 1096-9896 (Online)
2. The American Journal of Pathology. ISSN: 0002-9440
3. Pathology. 1465-3931 (Online)
4. International Journal of Physiology, Pathophysiology and Pharmacology. ISSN: 1944-8171 (Online)
5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929.
Semester – II

COMPUTER APPLICATIONs IN PHARMACY

Subject code: BP205T

Theory (3 Hours / Week; 3 Credits, 30 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases.

Objectives: Upon completion of the course the student shall be able to

1. know the various types of application of computers in pharmacy
2. know the various types of databases
3. know the various applications of databases in pharmacy

Course content:

UNIT – I

Number system: Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One’s complement, Two’s complement method, binary multiplication, binary division

Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project

UNIT – II

Web technologies: Introduction to HTML, XML, CSS and Programming languages, introduction to web servers and Server Products
Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database

UNIT – III

Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile

68
technology and adherence monitoring

Diagnostic System, Lab-diagnostic System, Patient Monitoring System, Pharma Information System

UNIT – IV

Bioinformatics: Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery

UNIT-V

Computers as data analysis in Preclinical development:
Chromatographic data analysis(CDS), Laboratory Information management System (LIMS) and Text Information Management System(TIMS)

BP210P. COMPUTER APPLICATIONS IN PHARMACY (Practical)

1. Design a questionnaire using a word processing package to gather information about a particular disease.

2. Create a HTML web page to show personal information.

3. Retrieve the information of a drug and its adverse effects using online tools

4. Creating mailing labels Using Label Wizard, generating label in MS WORD

5. Create a database in MS Access to store the patient information with the required fields Using access

6. Design a form in MS Access to view, add, delete and modify the patient record in the database

7. Generating report and printing the report from patient database

8. Creating invoice table using – MS Access

9. Drug information storage and retrieval using MS Access

10. Creating and working with queries in MS Access

11. Exporting Tables, Queries, Forms and Reports to web pages

12. Exporting Tables, Queries, Forms and Reports to XML pages

Recommended books (Latest edition):
2. Computer Application in Pharmaceutical Research and Development – Sean Ekins – Wiley-Interscience, A John Willey and Sons, INC., Publication, USA
Semester – II
ENVIRONMENTAL SCIENCES
Subject code: BP206T
Theory (3 Hours / Week; 3 Credits, 30 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope: Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment.

Objectives: Upon completion of the course the student shall be able to:

1. Create the awareness about environmental problems among learners.
2. Impart basic knowledge about the environment and its allied problems.
3. Develop an attitude of concern for the environment.
4. Motivate learner to participate in environment protection and environment improvement.
5. Acquire skills to help the concerned individuals in identifying and solving environmental problems.

Course content:

Unit-I
The Multidisciplinary nature of environmental studies Natural Resources
Renewable and non-renewable resources:
Natural resources and associated problems
a) Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources: Role of an individual in conservation of natural resources.

Unit-II
Ecosystems
- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
Unit-III
Environmental Pollution: Air pollution; Water pollution; Soil pollution

Recommended Books (Latest edition):
1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore
5. Clark R.S., Marine Pollution, Clanderson Press Oxford
8. Down of Earth, Centre for Science and Environment
SEMESTER III
Semester – III
PHARMACEUTICAL ORGANIC CHEMISTRY-II

Subject code: BP301T

Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to

1. write the structure, name and the type of isomerism of the organic compound
2. write the reaction, name the reaction and orientation of reactions
3. account for reactivity/stability of compounds,
4. prepare organic compounds

Course Content:

General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained

To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT I 10 Hours

- **Benzene and its derivatives**
 A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Hückel’s rule
 B. Reactions of benzene - nitrination, sulphonation, halogenation-reactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation.
 C. Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction
 D. Structure and uses of DDT, Saccharin, BHC and Chloramine

UNIT II 10 Hours

- **Phenols** - Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol,
naphthols

- **Aromatic Amines** - Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts
- **Aromatic Acids** – Acidity, effect of substituents on acidity and important reactions of benzoic acid.

UNIT III

- **Fats and Oils**
 a. Fatty acids – reactions.
 c. Analytical constants – Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value – significance and principle involved in their determination.

UNIT IV

- **Polynuclear hydrocarbons:**
 a. Synthesis, reactions
 b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

UNIT V

- **Cyclo alkanes**
 Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only

BP305P: PHARMACEUTICAL ORGANIC CHEMISTRY -II (Practical)

- **I** Experiments involving laboratory techniques
 - Recrystallization
 - Steam distillation

- **II** Determination of following oil values (including standardization of reagents)
 - Acid value
 - Saponification value
 - Iodine value

- **III** Preparation of compounds
- Benzanalide/Phenyl benzoate/Acetanalide from Aniline/ Phenol/Aniline by acylation reaction.
- 2,4,6-Tribromo aniline/Para bromo acetanalide from Aniline/
- Acetanalide by halogenation (Bromination) reaction.
- 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid/ Nitro benzene by nitrilation reaction.
- Benzoic acid from Benzyl chloride by oxidation reaction.
- Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
- 1-Phenylazo-2-napthol from Aniline by diazotization and coupling reactions.
- Benzil from Benzoin by oxidation reaction.
- Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction
- Cinnammic acid from Benzaldehyde by Perkin reaction
- P-Iodo benzoic acid from P-amino benzoic acid

Recommended Books (Latest Editions)
1. Organic Chemistry by Morrison and Boyd
2. Organic Chemistry by I.L. Finar, Volume-I
4. Organic Chemistry by P.L.Soni
5. Practical Organic Chemistry by Mann and Saunders.
8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
Semester – III
PHYSICAL PHARMACEUTICAL-I
Subject code: BP302T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to
1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
2. Know the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations
3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I 10 Hours

Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult’s law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications

UNIT-II 10 Hours

States of Matter and properties of matter: State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols
– inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid- crystalline, amorphous & polymorphism.

Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications
UNIT-III 08 Hours

Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions, surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.

UNIT-IV 08Hours

UNIT-V 07 Hours

pH, buffers and Isotonic solutions: Sorensen’s pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.

BP306P. PHYSICAL PHARMACEUTICS – I (Practical) 4hrs/week

1. Determination the solubility of drug at room temperature.
2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
3. Determination of Partition co-efficient of benzoic acid in benzene and water
4. Determination of Partition co-efficient of Iodine in CCl₄ and water
5. Determination of % composition of NaCl in a solution using phenol-water system by CST method
6. Determination of surface tension of given liquids by drop count and drop weight method
7. Determination of HLB number of a surfactant by saponification method
8. Determination of Freundlich and Langmuir constants using activated char coal
9. Determination of critical micellar concentration of surfactants
10. Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method
11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method
Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin
2. Experimental Pharmaceutics by Eugene, Parott.
3. Tutorial Pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc.
7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
8. Laboratory Manual of Physical Pharmaceutics, C.V.S. Subramanyam, J. Thimma settee
9. Physical Pharmaceutics by C.V.S. Subramanyam
10. Test book of Physical Phramacy, by Gaurav Jain & Roop K. Khar
Semester – III
PHARMACEUTICAL MICROBIOLOGY
Subject code: BP303T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Education</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Scope:

- Study of all categories of microorganisms especially for the production of alcohol antibiotics, vaccines, vitamins enzymes etc..

Objectives: Upon completion of the subject student shall be able to;

1. Understand methods of identification, cultivation and preservation of various microorganisms
2. To understand the importance and implementation of sterilization in pharmaceutical processing and industry
3. Learn sterility testing of pharmaceutical products.
4. Carried out microbiological standardization of Pharmaceuticals.
5. Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

Unit I
10 Hours

Introduction, history of microbiology, its branches, scope and its importance.
Introduction to Prokaryotes and Eukaryotes
Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).
Study of different types of phase contrast microscopy, dark field microscopy and electron microscopy.

Unit II
10 Hours

Identification of bacteria using staining techniques (simple, Gram’s & Acid fast staining) and biochemical tests (IMViC).
Study of principle, procedure, merits, demerits and applications of physical, chemical
gaseous, radiation and mechanical method of sterilization.
Evaluation of the efficiency of sterilization methods.
Equipments employed in large scale sterilization.
Sterility indicators.

Unit III

10 Hours

Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.
Classification and mode of action of disinfectants
Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions
Evaluation of bactericidal & Bacteriostatic.
Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Unit IV

08 Hours

Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.
Assessment of a new antibiotic.

Unit V

07 Hours

Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.
Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.
Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.
Application of cell cultures in pharmaceutical industry and research.

BP 307P. PHARMACEUTICAL MICROBIOLOGY (Practical)

4 Hrs/week

1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
2. Sterilization of glassware, preparation and sterilization of media.
4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).
5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
6. Microbiological assay of antibiotics by cup plate method and other methods
7. Motility determination by Hanging drop method.
8. Sterility testing of pharmaceuticals.
9. Bacteriological analysis of water

Recommended Books (Latest edition)

5. Rose: Industrial Microbiology.
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
10. Ananthnarayan : Text Book of Microbiology, Orient-Longman, Chennai
12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
13. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company
Semester – III
PHARMACEUTICAL ENGINEERING
Subject code: BP304T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>Internal</td>
</tr>
<tr>
<td>Total</td>
<td>External</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:

1. To know various unit operations used in Pharmaceutical industries.
2. To understand the material handling techniques.
3. To perform various processes involved in pharmaceutical manufacturing process.
4. To carry out various test to prevent environmental pollution.
5. To appreciate and comprehend significance of plant lay out design for optimum use of resources.
6. To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

UNIT-I
10 Hours

- **Flow of fluids:** Types of manometers, Reynolds number and its significance, Bernoulli’s theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.

- **Size Reduction:** Objectives, Mechanisms & Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill & end runner mill.

- **Size Separation:** Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter & elutriation tank.

UNIT-II
10 Hours

- **Heat Transfer:** Objectives, applications & Heat transfer mechanisms. Fourier’s law, Heat transfer by conduction, convection & radiation. Heat
interchangers & heat exchangers.

- **Evaporation:** Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process, principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator & Economy of multiple effect evaporator.

- **Distillation:** Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

UNIT- III
08 Hours

- **Drying:** Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve, principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer, spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.

- **Mixing:** Objectives, applications & factors affecting mixing, Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing. Principles, Construction, Working, uses, Merits and Demerits of Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer, planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier,

UNIT-IV
08 Hours

- **Filtration:** Objectives, applications, Theories & Factors influencing filtration, filter aids, filter medias. Principle, Construction, Working, Uses, Merits and demerits of plate & frame filter, filter leaf, rotary drum filter, Meta filter & Cartridge filter, membrane filters and Seidtz filter.

- **Centrifugation:** Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

UNIT- V
07 Hours

- **Materials of pharmaceutical plant construction, Corrosion and its prevention:** Factors affecting during materials selected for Pharmaceutical
plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.

Recommended Books: (Latest Editions)

P308P - PHARMACEUTICAL ENGINEERING (Practical)

4 Hours/week

I. Determination of radiation constant of brass, iron, unpainted and painted glass.
II. Steam distillation – To calculate the efficiency of steam distillation.
III. To determine the overall heat transfer coefficient by heat exchanger.
IV. Construction of drying curves (for calcium carbonate and starch).
V. Determination of moisture content and loss on drying.
VI. Determination of humidity of air – i) From wet and dry bulb temperatures – use of Dew point method.
VII. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
VIII. Size analysis by sieving – To evaluate size distribution of tablet granulations – Construction of various size frequency curves including arithmetic and logarithmic probability plots.
IX. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger’s, Bond’s coefficients, power requirement and critical speed of Ball Mill.
X. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.
XI. Factors affecting Rate of Filtration and Evaporation (Surface area,
Concentration and Thickness/viscosity

XII. To study the effect of time on the Rate of Crystallization.

XIII. To calculate the uniformity Index for given sample by using Double Cone Blender.
Objective of the Course
This course will expose the students to the different functions performed by managers and the roles they have to assume for those functions. It will also provide an overview of the skills required by managers for the different roles and functions. In addition, the course will help students to understand human beings and what motivates them for higher performance in organizational settings.

The objectives of this course are:

- To expose the students to the different functions performed by managers, the roles they have to play for those functions, and the knowledge and skills they have to develop for the roles through real life examples and cases;
- To help the students develop an understanding of concepts and tools like MBO and SWOT to develop proficiency in the planning of activities of an organization.
- To enable the students to appreciate the importance of entrepreneurship, innovation and leadership and to help them realize the need for collaboration and networking in the management of any functional area of management;
- To provide the necessary foundation for all other courses based on management practices across the world
- To expose the students to the environmental and organisational context, cognitive processes and dynamics of organisational behavior; and
- To enable them to manage and lead for high performance with the human being at the centre of the organisation.

Student Learning Outcomes/ Objectives
At the end of the course, the participant should have clear exposure to the functional areas of management and the roles managers assume for managerial performance.

Course Content:

Unit I Foundations of Management 8 hours
- Managing
- The Excellent Environment and Organizational Culture
- Managerial Decision Making

<table>
<thead>
<tr>
<th>Unit</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Planning and Strategizing</td>
<td>7 hours</td>
</tr>
<tr>
<td></td>
<td>• Planning and Strategic Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ethics, Ethical Behaviour in Organizations and Corporate Responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• International Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>Unit III</td>
<td>Organizing</td>
<td>8 hours</td>
</tr>
<tr>
<td></td>
<td>• Organization Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Agility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Human Resource Management, Especially with Diverse Work Force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Types of Organizations and Basis for Choice of Different Types</td>
<td></td>
</tr>
<tr>
<td>Unit IV</td>
<td>Leading</td>
<td>7 hours</td>
</tr>
<tr>
<td></td>
<td>• Leadership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leadership Styles and Skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Theories of Leadership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Teamwork and Negotiation</td>
<td></td>
</tr>
<tr>
<td>Unit V</td>
<td>Controlling</td>
<td>5 hours</td>
</tr>
<tr>
<td></td>
<td>• Managerial Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Managing Technology and Innovation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Creating and Managing Change</td>
<td></td>
</tr>
<tr>
<td>Unit VI</td>
<td>Organizational Culture</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>• Organizational Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Creating and Maintaining Organizational Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rewards and Recognition in Organizational Settings</td>
<td></td>
</tr>
<tr>
<td>Unit VII</td>
<td>Cognitive Processes of Organizational Behavior</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>• Meaning and Types of Personality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nature and Dimensions of Attitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Commitment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Motives, Motivation and Theories</td>
<td></td>
</tr>
<tr>
<td>Unit VIII</td>
<td>Dynamics of Organizational Behavior</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>• Cause and Effect of Stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Concept and Types of Conflict</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coping Strategies for Stress and Conflict</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Political Implications of Power</td>
<td></td>
</tr>
<tr>
<td>Unit IX</td>
<td>Contemporary Issues in Management</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

88
Reference Books

2) Stoner, Freeman & Gilbert Jr., Management, Prentice Hall of India
6) McGrath, E.H., Basic Managerial Skills for All, PHI, New Delhi
7) Slocum, Helrigel, Organisational Behaviour, Thomson/Cengage
8) Udai Pareek (2008), Understanding Organisational Behaviour, Oxford University Press
SEMESTER IV
Semester – IV
PHARMACEUTICAL ORGANIC CHEMISTRY-III
Subject code: BP40IT
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>Internal</td>
</tr>
<tr>
<td>Total</td>
<td>Practical</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important hetero cyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

1. understand the methods of preparation and properties of organic compounds
2. explain the stereo chemical aspects of organic compounds and stereo chemical reactions
3. know the medicinal uses and other applications of organic compounds

Course Content:

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

UNIT-I
10 Hours

Stereo isomerism
Optical isomerism –
Optical activity, enantiomerism, diastereoisomerism, meso compounds
Elements of symmetry, chiral and achiral molecules
DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers
Reactions of chiral molecules
Racemic modification and resolution of racemic mixture.
Asymmetric synthesis: partial and absolute

UNIT-II
10 Hours

Geometrical isomerism
Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems)
Methods of determination of configuration of geometrical isomers. Conformational isomerism in Ethane, n-Butane and Cyclohexane.
Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.
Stereospecific and stereoselective reactions

UNIT-III 10 Hours

Heterocyclic compounds:
Nomenclature and classification
Synthesis, reactions and medicinal uses of following compounds/derivatives
Pyrrole, Furan, and Thiophene
Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene

UNIT-IV 8 Hours
Synthesis, reactions and medicinal uses of following compounds/derivatives
Pyrazole, Imidazole, Oxazole and Thiazone.
Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine
Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives

UNIT-V 07 Hours
Reactions of synthetic importance
Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction.
Oppenauer-oxidation and Dakin reaction.
Beckmanns rearrangement and Schmidt rearrangement.
Claisen-Schmidt condensation

Recommended Books (Latest Editions)
1. Organic chemistry by I.L. Finar, Volume-I & II.
3. Heterocyclic Chemistry by Raj K. Bansal
4. Organic Chemistry by Morrison and Boyd
5. Heterocyclic Chemistry by T.L. Gilchrist
Theory

Semester – IV
MEDICINAL CHEMISTRY-I
Subject code: BP402T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

1. understand the chemistry of drugs with respect to their pharmacological activity
2. understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
3. know the Structural Activity Relationship (SAR) of different class of drugs
4. write the chemical synthesis of some drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT- I

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Introduction to Medicinal Chemistry

History and development of medicinal chemistry

Physicochemical properties in relation to biological action

Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.

Drug metabolism

Drug metabolism principles- Phase I and Phase II.

Factors affecting drug metabolism including stereo chemical aspects.

UNIT- II

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
Hours

Drugs acting on Autonomic Nervous System

System Adrenergic

Neurotransmitters:
Biosynthesis and catabolism of catecholamine.
Adrenergic receptors (Alpha & Beta) and their distribution.

Sympathomimetic agents: SAR of Sympathomimetic agents
Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine,
Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline,
Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.
- Indirect acting agents: Hydroxyamphetamine,
 Pseudoephedrine, Propylhexedrine.
- Agents with mixed mechanism: Ephedrine,
 Metaraminol.

Adrenergic Antagonists:

Alpha adrenergic blockers: Tolazoline*, Phentolamine,
Phenoxybenzamine, Prazosin, Dihydroergotamine, Methysergide.

Beta adrenergic blockers: SAR of beta blockers, Propranolol*,
Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol,
Labetolol, Carvedilol.

UNIT-III 10 Hours

Cholinergic neurotransmitters:
Biosynthesis and catabolism of acetylcholine.
Cholinergic receptors (Muscarinic & Nicotinic) and their distribution.

Parasympathomimetic agents: SAR of Parasympathomimetic agents
Direct acting agents: Acetylcholine, Carbachol*,
Bethanechol,
Methacholine,
Pilocarpine.
Indirect acting/ Cholinesterase inhibitors (Reversible &
Irreversible: Physostigmine, Neostigmine*, Pyridostigmine, Edrophonium chloride, Tacrine hydrochloride, Ambenonium chloride, Isofluorurate, Eechothiophate iodide, Parathione, Malathion.

Cholinesterase reactivator: Pralidoxime chloride.

Cholinergic Blocking agents: SAR of cholinolytic agents

Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.

Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztrapine mesylate, Orphenadrine citrate, Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexyl chloride, Isopropamide iodide, Ethopropazine hydrochloride.

UNIT- IV

08 Hours

Drugs acting on Central Nervous System

A. Sedatives and Hypnotics:

Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem

Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital, Butobarbital, Pentobarbital, Secobarbital

Miscellaneous:

Amides & imides: Glutethimide.

B. Antipsychotics

Phenothiazine: SAR of Phenothiazines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride.

Ring Analogues of Phenothiazine: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.

Fluro buterophenones: Haloperidol, Droperidol, Risperidone.
Beta amino ketones: Molindone hydrochloride.

Benzamides: Sulpieride.

C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action

Barbiturates: Phenobarbitone, Methabarital.

Hydantoins: Phenytoin*, Mephenytoin, Ethotoin

Oxazolidine diones: Trimethadione, Paramethadione

Succinimides: Phensuximide, Methsuximide,

Ethosuximide* **Urea and monoacylureas:**

Phenacemide, Carbamazepine* **Benzodiazepines:**

Clonazepam

Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate

UNIT – V 07 Hours

Drugs acting on Central Nervous System General anesthetics:

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Ultra short acting barbiturates: Methohexitol sodium*, Thiamylal sodium, Thiopental sodium.

Dissociative anesthetics: Ketamine hydrochloride,*

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anaïrdine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate.

Narcotic antagonists: Nalorphine hydrochloride, Levallophan tartarate, Naloxone hydrochloride.

Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Meclafenamate, Indomethacin, Sulindac, Tolmetin, Zomepirac, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Phenacetin, Acetaminophen, Antipyrine, Phenylbutazone.

BP406P. MEDICINAL CHEMISTRY – I (Practical) 4 Hours/Week

1 **Preparation of drugs/intermediates**

1 1,3-pyrazole
2 1,3-oxazole
3 Benzimidazole
4 Benztriazole
5 2,3- diphenyl quinoxaline
6 Benzocaine
7 Phenytoin
8 Phenothiazine
9 Barbiturate

II Assay of drugs
1 Chlorpromazine
2 Phenobarbitone
3 Atropine
4 Ibuprofen
5 Aspirin
6 Furosemide

III Determination of Partition coefficient for any two drugs

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Theory – IV
PHYSICAL PHARMACEUTICS-II
Subject code: BP403T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: The course deals with the various physica and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to

1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
2. Know the principles of chemical kinetics & to use them for stability testing & determination of expiry date of formulations
3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT-I

Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization & protective action.

UNIT-II

Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers

Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus

UNIT-III

Coarse dispersion: Suspension, interfacial properties of suspended particles, settling
in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.

UNIT-IV
10 Hours

Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.

UNIT-V

Drug stability: Reaction kinetics: zero, pseudo-zero, first & second order, units of basic rate constants, determination of reaction order. Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific & general acid base catalysis. Simple numerical problems. Stabilization of medicinal agents against common reactions like hydrolysis & oxidation. Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention

BP 407P. PHYSICAL PHARMACEUTICS- II (Practical)

3 Hrs/week

1. Determination of particle size, particle size distribution using sieving method
2. Determination of particle size, particle size distribution using Microscopic method
3. Determination of bulk density, true density and porosity
4. Determine the angle of repose and influence of lubricant on angle of repose
5. Determination of viscosity of liquid using Ostwald’s viscometer
6. Determination sedimentation volume with effect of different suspending agent
7. Determination sedimentation volume with effect of different concentration of single suspending agent
8. Determination of viscosity of semisolid by using Brookfield viscometer
9. Determination of reaction rate constant first order.
10. Determination of reaction rate constant second order
11. Accelerated stability studies
Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin, Sixth edition
2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.
Semester – IV
PHARMACOLOGY-I
Subject code: BP404T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course the student should be able to

1. Understand the pharmacological actions of different categories of drugs
2. Explain the mechanism of drug action at organ system/sub cellular/ macromolecular levels.
3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
4. Observe the effect of drugs on animals by simulated experiments
5. Appreciate correlation of pharmacology with other bio medical sciences

Course Content:

UNIT-I 08 hours
1. General Pharmacology
 a. Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists(competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
 b. Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs .Enzyme induction, enzyme inhibition, kinetics of elimination

UNIT-II 12 Hours

General Pharmacology
 a. Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein–coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding
receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.

b. Adverse drug reactions.
c. Drug interactions (pharmacokinetic and pharmacodynamic)
d. Drug discovery and clinical evaluation of new drugs—Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.

UNIT-III

2. Pharmacology of drugs acting on peripheral nervous system 10 Hours
a. Organization and function of ANS.
b. Neurohumoral transmission, co-transmission and classification of neurotransmitters.
c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.
d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral).
e. Local anesthetic agents.
f. Drugs used in myasthenia gravis and glaucoma

UNIT-IV

3. Pharmacology of drugs acting on central nervous system 08 Hours
a. Neurohumoral transmission in the C.N.S. special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.
b. General anesthetics and pre-anesthetics.
c. Sedatives, hypnotics and centrally acting muscle relaxants.
d. Anti-epileptics
e. Alcohols and disulfiram

UNIT-V

3. Pharmacology of drugs acting on central nervous system 07 Hours
b. Drugs used in Parkinson’s disease and Alzheimer’s disease.
c. CNS stimulants and nootropics.
d. Opioid analgesics and antagonists
e. Drug addiction, drug abuse, tolerance and dependence.
BP 408 P.PHARMACOLOGY-I (Practical) 4hrs/week

1. Introduction to experimental pharmacology.
2. Commonly used instruments in experimental pharmacology.
3. Study of common laboratory animals.
4. Maintenance of laboratory animals as per CPCSEA guidelines.
6. Study of different routes of drugs administration in mice/rats.
7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.
8. Effect of drugs on ciliary motility of frog oesophagus
9. Effect of drugs on rabbit eye.
10. Effects of skeletal muscle relaxants using rota-rod apparatus.
11. Effect of drugs on locomotor activity using actophotometer.
12. Anticonvulsant effect of drugs by MES and PTZ method.
13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
15. Study of local anesthetics by different methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)

3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott’s Illustrated Reviews-Pharmacology
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
8. Modern Pharmacology with clinical Applications, by Charles R.Craig & Robert,

10. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,
Semantic – IV
PHARMACOGNOSY AND PHYTOCHEMISTRY-I
Subject code: BP405T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Scheme</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>

Scope: The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties.

Objectives: Upon completion of the course, the student shall be able
1. to know the techniques in the cultivation and production of crude drugs
2. to know the crude drugs, their uses and chemical nature
3. know the evaluation techniques for the herbal drugs
4. to carry out the microscopic and morphological evaluation of crude drugs

Course Content:

UNIT-I
Introduction to Pharmacognosy:
10 Hours
(a) Definition, history, scope and development of Pharmacognosy
(b) Sources of Drugs – Plants, Animals, Marine & Tissue culture
(c) Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo- gum -resins).

Classification of drugs:
Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs

Quality control of Drugs of Natural Origin:
Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties.
Quantitative microscopy of crude drugs including lycopodium spore method, leafconstants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

UNIT-II
Cultivation, Collection, Processing and storage of drugs of natural origin:
10 Hours
Cultivation and Collection of drugs of natural origin
Factors influencing cultivation of medicinal plants.
Plant hormones and their applications.
Polyplody, mutation and hybridization with reference to medicinal plants

Conservation of medicinal plants

UNIT-III
07 Hours
Plant tissue culture:
Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance.
Applications of plant tissue culture in pharmacognosy.
Edible vaccines

UNIT IV
Pharmacognosy in various systems of medicine:
Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine.

Introduction to secondary metabolites:
Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins

UNIT V
Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs
Plant Products:
Fibers - Cotton, Jute, Hemp
Hallucinogens, Teratogens, Natural allergens

Primary metabolites:
General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:
Carbohydrates: Acacia, Agar, Tragacanth, Honey
Proteins and Enzymes : Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopéptidase, urokinase, streptokinase, pepsin).
Lipids(Waxes, fats, fixed oils) : Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax
Marine Drugs:
Novel medicinal agents from marine sources

BP408 P. PHARMACOGNOSY AND PHYTOCHEMISTRY I (Practical) 4 Hours/Week
1. Analysis of crude drugs by chemical tests: (i)Tragacanth (ii) Acacia (iii)Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil
2. Determination of stomatal number and index
3. Determination of vein islet number, vein islet termination and palisade ratio.
4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer
5. Determination of Fiber length and width
6. Determination of number of starch grains by Lycopodium spore method
7. Determination of Ash value
8. Determination of Extractive values of crude drugs
9. Determination of moisture content of crude drugs
10. Determination of swelling index and foaming
Recommended Books: (Latest Editions)

3. Text Book of Pharmacognosy by T.E. Wallis
7. Essentials of Pharmacognosy, Dr. SH. Ansari, IInd edition, Birla publications, New Delhi, 2007
8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae
Objective of the Course
The objectives of this course are:
- To enable the students to understand the principles underlying the structure and functioning of markets;
- To help them apply economic theory for optimal decision-making at the firm level in the context of market constraints, through real-life examples from across the globe and real cases of firms;
- To provide them sufficient exposure to the world of industry, trade and commerce, so as to make them feel comfortable reading and understanding daily economic and financial news about firms, and engaging in critical discussion on economic issues affecting firms.

Student Learning Outcomes/Objectives
At the end of the course, the student should have developed:
- An appreciation of the principles of micro-economics and their potential for firm level decision-making;
- A keen desire for reading news of economic and financial changes/developments on a regular basis, and engaging in discussion and critical evaluation of such developments.

Course Content:
Unit I Introduction Ten Principles of Economics Firms and its Objective 8 hours
Micro-economics & Macro-economic Indicators
Unit II Understanding Markets Forces 7 hours
 - The Market Forces of Supply and Demand
 - Elasticity, Types and Applications
 - Supply, Demand and Government Policies
 - The Theory of Consumer Choice
 - Demand Forecasting and Analysis
Unit III Markets and Welfare 8 hours
Consumers, Producer, and Market Efficiency
Externalities and Public Goods
The Design of the Tax System (with specific reference to India)

Unit IV Firm Behavior and The Organization of Industry 7 hours
- The Cost of Production
- Market Structures
 - Firms in Competitive Markets
 - Monopoly
 - Oligopoly
 - Monopolistic Competition

Unit V Macroeconomic Environment 5 hours
- Macroeconomics Aggregates
- Fiscal, Monetary and Exchange Rate Policies
- Behavioral and Technology Functions

Unit VI The Economics of Labour Markets 5 hours
- Factor Markets
- Earnings and Discrimination
- Income Inequality and Poverty

Unit VII Sector Specific Issues 5 hours
- Pharmacy / Engineering
- Contemporary Issues

Reference Books
1) Salvatore Dominick (Seventh Edition), Managerial Economics - Principles and Worldwide Applications (Adapted Version), Oxford University Press
2) D. Salvatore & Ravikesh Srivastava (Seventh Edition), Managerial Economics in a Global Economy, Oxford University Press
3) H. L. Ahuja (2007), Managerial Economics, S. Chand
4) Suma Damodaran(2006), Managerial Economics, Oxford University Press
5) Geetika, Piyali Ghosh, Purba Roy Choudhary (Second Edition), Managerial Economics, Mc Graw Hill
6) Douglas Bernheim, Michael Winston (2008), Microeconomics, Tata McGraw-Hill
7) Mankiw (Forth Edition), Principles of Microeconomics, Cengage Learning
8) Ravindra H. Dholakia and Ajay N. Oza(Second Edition), Microeconomics for Management Students, Oxford University Press
9) Macroeconomics – By Goodwin, Nelson & Harris, PHI Learning Pvt. Ltd
11) Macroeconomics – By Olivier Blanchard, Pearson Education
SEMESTER V
Semester – V
MEDICINAL CHEMISTRY-II
Subject code: BP501T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to

1. Understand the chemistry of drugs with respect to their pharmacological activity
2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
3. Know the Structural Activity Relationship of different class of drugs
4. Study the chemical synthesis of selected drugs

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT- I 10 Hours

Antihistaminic agents: Histamine, receptors and their distribution in the human body

H₁–antagonists: Diphenhydramine hydrochloride*, Dimenhydrinate, Doxylamines succinate, Clemastine fumarate, Diphenylhydraline hydrochloride, Tripelenamine hydrochloride, Chlorcyclizine hydrochloride, Meclizine hydrochloride, Bucazine hydrochloride, Chlorpheniramine maleate, Triprolidine hydrochloride*, Phenidamine tartrate, Promethazine hydrochloride*, Trimeprazine tartrate, Cyproheptadine hydrochloride, Azatidine maleate, Astemizole, Loratadine, Cetirizine, Levocetazine Cromolyn sodium
H₂-antagonists: Cimetidine*, Famotidine, Ranitidin.

Gastric Proton pump inhibitors: Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole

Anti-neoplastic agents:

Alkylation agents: Meclorethamine*, Cyclophosphamide, Melphalan, Chlorambucil, Busulfan, Thiotepa

Antimetabolites: Mercaptopurine*, Thioguanine, Fluorouracil, Flouxuridine, Cytarabine, Methotrexate*, Azathioprine

Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin

Plant products: Etoposide, Vinblastin sulphate, Vincristin sulphate

Miscellaneous: Cisplatin, Mitotane.

UNIT – II

10 Hours

Anti-anginal:

Vasodilators: Amyl nitrite, Nitroglycerin*, Pentaerythritol tetranitrate, Isosorbide dinitrite*, Dipyridamole.

Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine.

Diuretics:

Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamidine.

Thiazides: Chlorthiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide,

Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.

Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride.

Osmotic Diuretics: Mannitol

Anti-hypertensive Agents: Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyl dopate hydrochloride,* Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride.

UNIT- III

10 Hours

Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcanide hydrochloride, Amiodarone, Sotalol.
Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol

Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel

Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan.

UNIT - IV 08 Hours

Drugs acting on Endocrine system
Nomenclature, Stereochemistry and metabolism of steroids

Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrone, Diethyl stilbestrol.

Drugs for erectile dysfunction: Sildenafil, Tadalafil.

Oral contraceptives: Mifepristone, Norgestrel, Levonorgestrol

Corticosteroids: Cortisone, Hydrocortisone, Prednisolone, Betamethasone, Dexamethasone

Thyroid and antithyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole.

UNIT – V 07 Hours

Antidiabetic agents:
Insulin and its preparations

Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.

Biguanides: Metformin.

Thiazolidinediones: Pioglitazone, Rosiglitazone.

Meglitinides: Repaglinide, Nateglinide.

Glucosidase inhibitors: Acarbose, Voglibose.

Local Anesthetics: SAR of Local anesthetics

Benzoic Acid derivatives; Cocaine, Hexylcaine, Meprylcaine, Cyclomethycaine, Piperocaine.

Amino Benzoic acid derivatives: Benzocaine*, Butamben, Procaine*, Butacaine, Propoxycaine, Tetracaine, Benoxinate.

Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine.

Miscellaneous: Phenacaine, Diperodon, Dibucaaine.*
Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Semester – V
INDUSTRIAL PHARMACY-I
Subject code: BP502T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product.

Objectives: Upon completion of the course the student shall be able to

1. Know the various pharmaceutical dosage forms and their manufacturing techniques.
2. Know various considerations in development of pharmaceutical dosage forms
3. Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality

Course content:

UNIT-I 07 Hours
Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances.

a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism

b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization

BCS classification of drugs & its significant

Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.

UNIT-II 10 Hours
Tablets:
b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
c. Quality control tests: In process and finished product tests

Liquid orals: Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia

UNIT-III

Capsules

a. **Hard gelatin capsules:** Introduction, Production of hard gelatin capsule shells. size of capsules, Filling, finishing and special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules.

b. **Soft gelatin capsules:** Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications.

Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets

UNIT-IV

Parenteral Products:

a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity

b. Production procedure, production facilities and controls, aseptic processing

c. Formulation of injections, sterile powders, large volume parenterals and lyophilized products.

d. Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products.

Ophthalmic Preparations: Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations
UNIT-V

10 Hours

Cosmetics: Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, tooth pastes, hair dyes and sunscreens.

Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies.

Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests.

BP 506 P. Industrial PharmacyI (Practical) 4 hours/week

1. Preformulation studies on paracetamol/asparin/or any other drug
2. Preparation and evaluation of Paracetamol tablets
3. Preparation and evaluation of Aspirin tablets
4. Coating of tablets- film coating of tables/granules
5. Preparation and evaluation of Tetracycline capsules
6. Preparation of Calcium Gluconate injection
7. Preparation of Ascorbic Acid injection
8. Quality control test of (as per IP) marketed tablets and capsules
9. Preparation of Eye drops/ and Eye ointments
10. Preparation of Creams (cold / vanishing cream)
11. Evaluation of Glass containers (as per IP)
Recommended Books: (Latest Editions)

1. Pharmaceutical dosage forms - Tablets, volume 1 -3 by H.A. Liberman, Leon Lachman & J.B. Schwartz
2. Pharmaceutical dosage form - Parenteral medication vol- 1&2 by Liberman & Lachman
3. Pharmaceutical dosage form disperse system VOL-1 by Liberman & Lachman
6. Theory and Practice of Industrial Pharmacy by Liberman & Lachman
7. Pharmaceutics- The science of dosage form design by M.E. Aulton, Churchill livingstone, Latest edition
Semester – V
PHARMACOLOGY-II
Subject code: BP503T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Theory</td>
</tr>
<tr>
<td>Practical</td>
<td>External</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay.

Objectives: Upon completion of this course the student should be able to

1. Understand the mechanism of drug action and its relevance in the treatment of different diseases
2. Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments
3. Demonstrate the various receptor actions using isolated tissue preparation
4. Appreciate correlation of pharmacology with related medical sciences

Course Content:

UNIT-I
1. Pharmacology of drugs acting on cardio vascular system
 a. Introduction to hemodynamic and electrophysiology of heart.
 b. Drugs used in congestive heart failure
 c. Anti-hypertensive drugs.
 d. Anti-anginal drugs.
 e. Anti-arrhythmic drugs.
 f. Anti-hyperlipidemic drugs.

UNIT-II
1. Pharmacology of drugs acting on cardio vascular system
 a. Drug used in the therapy of shock.
 b. Hematinics, coagulants and anticoagulants.
 c. Fibrinolytics and anti-platelet drugs
 d. Plasma volume expanders
2. Pharmacology of drugs acting on urinary system
 a. Diuretics
 b. Anti-diuretics.
UNIT-III
3. Autocoids and related drugs
 a. Introduction to autocoids and classification
 b. Histamine, 5-HT and their antagonists.
 c. Prostaglandins, Thromboxanes and Leukotrienes.
 d. Angiotensin, Bradykinin and Substance P.
 e. Non-steroidal anti-inflammatory agents
 f. Anti-gout drugs
 g. Antirheumatic drugs

UNIT-IV
5. Pharmacology of drugs acting on endocrine system
 a. Basic concepts in endocrine pharmacology.
 b. Anterior Pituitary hormones- analogues and their inhibitors.
 c. Thyroid hormones- analogues and their inhibitors.
 d. Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D.
 d. Insulin, Oral Hypoglycemic agents and glucagon.
 e. ACTH and corticosteroids.

UNIT-V
5. Pharmacology of drugs acting on endocrine system
 a. Androgens and Anabolic steroids.
 b. Estrogens, progesterone and oral contraceptives.
 c. Drugs acting on the uterus.
6. Bioassay
 a. Principles and applications of bioassay.
 b. Types of bioassay
 c. Bioassay of insulin, oxytocin, vasopressin, ACTH, d-tubocurarine, digitalis, histamine and 5-HT

BP 507 P. PHARMACOLOGY-II (Practical)

4Hrs/Week
1. Introduction to in-vitro pharmacology and physiological salt solutions.
2. Effect of drugs on isolated frog heart.
3. Effect of drugs on blood pressure and heart rate of dog.
4. Study of diuretic activity of drugs using rats/mice.
5. DRC of acetylcholine using frog rectus abdominis muscle.
6. Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus abdominis muscle and rat ileum respectively.
10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay.
12. Determination of PD₂ value using guinea pig ileum.
13. Effect of spasmogens and spasmyotics using rabbit jejunum.
15. Analgesic activity of drug using central and peripheral methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)
3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
Semester – V

PHARMACOGNOSY AND PHYTOCHEMISTRY-II

Subject code: BP504T

Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>External</td>
</tr>
<tr>
<td>Practical</td>
<td>Internal</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

Scope: The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine.

Objectives: Upon completion of the course, the student shall be able

1. to know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents
2. to understand the preparation and development of herbal formulation.
3. to understand the herbal drug interactions
4. to carryout isolation and identification of phytoconstituents

Course Content:

UNIT-I

Metabolic pathways in higher plants and their determination
a) Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway.
b) Study of utilization of radioactive isotopes in the investigation of Biogenetic studies.

UNIT-II

General introduction, composition, chemistry & chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites

Alkaloids: Vinca, Rauwolfia, Belladonna, Opium,
Phenylpropanoids and Flavonoids: Lignans, Tea, Ruta
Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, Digitalis
Volatile oils: Mentha, Clove, Cinnamon, Fennel, Coriander,
Tannins: Catechu, Pterocarpus

7 Hours
14 Hours
Resins: Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony
Glycosides: Senna, Aloes, Bitter Almond
Iridoids, Other terpenoids & Naphthaquinones: Gentian, Artemisia, taxus, carotenoids

UNIT-III
Isolation, Identification and Analysis of Phytoconstituents

a) Terpenoids: Menthol, Citral, Artemisin
b) Glycosides: Glycyrrhetic acid & Rutin
c) Alkaloids: Atropine, Quinine, Reserpine, Caffeine
d) Resins: Podophyllotoxin, Curcumin

UNIT-IV
Industrial production, estimation and utilization of the following phytoconstituents: Forskolin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine

UNIT V
Basics of Phytochemistry
Modern methods of extraction, application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs.

BP 508 P. PHARMACOGNOSY AND PHYTOCHEMISTRY II (Practical)
4 Hours/Week

1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove, Ephedra, Fennel and Coriander
2. Exercise involving isolation & detection of active principles
 a. Caffeine - from tea dust.
 b. Diosgenin from Dioscorea
 c. Atropine from Belladonna
 d. Sennosides from Senna
3. Separation of sugars by Paper chromatography
4. TLC of herbal extract
5. Distillation of volatile oils and detection of phytoconstituents by TLC
6. Analysis of crude drugs by chemical tests: (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh
Recommended Books: (Latest Editions)
5. Essentials of Pharmacognosy, Dr.SH.Ansari, IInd edition, Birla publications, New Delhi, 2007
10. The formulation and preparation of cosmetic, fragrances and flavours.
12. Text Book of Biotechnology by Vyas and Dixit.
Semester – V
PHARMACEUTICAL JURISPRUDENCE
Subject code: BP505T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India.

Objectives: Upon completion of the course, the student shall be able to understand:

1. The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals.
2. Various Indian pharmaceutical Acts and Laws
3. The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
4. The code of ethics during the pharmaceutical practice

Course Content:

UNIT-I

Drugs and Cosmetics Act, 1940 and its rules 1945:

Objectives, Definitions, Legal definitions of schedules to the Act and Rules

Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties.

Manufacture of drugs – Prohibition of manufacture and sale of certain drugs,

Conditions for grant of license and conditions of license for manufacture of drugs, Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.

UNIT-II

Drugs and Cosmetics Act, 1940 and its rules 1945.

penalties
Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties.

Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors

UNIT-III 10 Hours

- **Pharmacy Act –1948**: Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and Penalties

- **Narcotic Drugs and Psychotropic substances Act-1985 and Rules**: Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and Penalties

UNIT-IV 08 Hours

- **Study of Salient Features of Drugs and Magic Remedies Act and its rules**: Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties

- **Prevention of Cruelty to animals Act-1960**: Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties

- **National Pharmaceutical Pricing Authority**: Drugs Price Control Order (DPCO)- 2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM)

UNIT-V 07 Hours

- **Pharmaceutical Legislations** – A brief review, Introduction, Study of drugs
enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee

- **Code of Pharmaceutical ethics** Definition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist’s oath
- **Medical Termination of Pregnancy Act**
- **Right to Information Act**
- **Introduction to Intellectual Property Rights (IPR)**

Recommended books: (Latest Edition)

1. Forensic Pharmacy by B. Suresh
2. Text book of Forensic Pharmacy by B.M. Mithal
5. Drugs and Cosmetics Act/Rules by Govt. of India publications.
6. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
7. Narcotic drugs and psychotropic substances act by Govt. of India publications
8. Drugs and Magic Remedies act by Govt. of India publication
Semester – V
PHARMACEUTICAL MARKETING AND DRUG STORE MANAGEMENT
Subject code: BP509T
Theory (3 Hours / Week; 3 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>Practical</td>
<td>External</td>
</tr>
<tr>
<td>Total</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Objective of the Course

➢ Basic Understanding of Pharmaceutical marketing strategies, planning in marketing, communication and needs of pharma sector

Student Learning Outcomes/ Objectives

➢ At the end of the course, students will be able to understand the fundamental scientific principles of Drugs store Management and inventory control, Strategic marketing process, Consumer market and Retail and whole sale drugs store.

Course Content:

UNIT I
Marketing tasks and philosophies: Marketing systems and pharma marketing environment 3 Hours

UNIT II
Consumer market: Pharmaceutical and buyer behaviour 2 Hours

UNIT III
Strategic marketing process: Industrial market, market segmentation, market measurement and forecasting. 5 Hours

UNIT IV
Strategic planning in pharma marketing: Situation analysis, developing marketing. Objectives; Determining positioning and differential advantage, selecting target markets designing marketing mix for target market. 5 Hours

UNIT V
Product decisions: Product classification, product life-cycle strategies, Branding, packaging and labelling decisions 3 Hours

UNIT VI
Pricing decisions: Pricing methods and strategies 2 Hours

UNIT VII
Distribution decisions: Importance and functions of distribution channels, distribution channel members 5 Hours

UNIT VIII
Promotion decisions: Promotion mix elements 3 Hours
UNIT IX Communication in pharmaceutical industry 2 Hours

UNIT X Drugs store Management and inventory control: Organization 8 Hours
of drugs store, Types of materials stocked, storage conditions, purchase and inventory control principles, purchase procedures, purchase order, procurement and stocking. Quality control of drugs in hospitals.

UNIT XI Retail and whole sale drugs store: Organization and structure 7 Hours
of retail and whole sale drug store, types of drug stores and design, maintenance of drug store, dispensing of proprietary products, maintenance of records of retail and wholesale.

Reference Books
1) Pharmaceutical Marketing by Subba Rao
2) Pharmaceutical Marketing by Dimitris and Dogramatiz
3) Pharmaceutical Marketing by Smith
4) Marketing Management, a South Asian Perspective by Kotlar
5) Marketing Management, Planning, Implementation and Control by Ramaswami and Namakumari.
7) Information Systems for Modern Management by Robert G. Murdick
SEMESTER VI
Theory

3

UNIT

m

S

o

c

Comput

rsta

le

u

a

u

mis

te

4.

p

gs

ye

a

L

e

Teaching Scheme

Evaluation Scheme

<table>
<thead>
<tr>
<th>Theory</th>
<th>Tutorial</th>
<th>Practical</th>
<th>Total</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>15</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern techniques of rational drug design like quantitative structure activity relationship (QSAR), Prodrug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs.

Objectives: Upon completion of the course student shall be able to

1. Understand the importance of drug design and different techniques of drug design.
2. Understand the chemistry of drugs with respect to their biological activity.
3. Know the metabolism, adverse effects and therapeutic value of drugs.
4. Know the importance of SAR of drugs.

Course Content:

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*)

UNIT-I 10 Hours

Antibiotics

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

β-Lactam antibiotics: Penicillin, Cepholosporins, β- Lactamase inhibitors, Monobactams

Aminoglycosides: Streptomycin, Neomycin, Kanamycin

Tetracyclines: Tetracycline, Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline
UNIT-II

Antibiotics

Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

Macrolide: Erythromycin Clarithromycin, Azithromycin.

Miscellaneous: Chloramphenicol*, Clindamycin.

Prodrugs: Basic concepts and application of prodrugs design.

Antimalarials: Etiology of malaria.

Quinolines: SAR, Quininesulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine.

Biganides and dihydro triazines: Cycloguanil pamoate, Proguanil.

Miscellaneous: Pyrimethamine, Artesunate, Artemether, Atovoquone.

UNIT – III

Anti-tubercular Agents

Synthetic anti tubercular agents: Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid.*

Anti tubercular antibiotics: Rifampicin, Rifabutin, Cycloserine Streptomycine, Capreomycin sulphate.

Urinary tract anti-infective agents

Quinolones: SAR of quinolones, Nalidixic Acid, Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacin, Gatifloxacin, Moxifloxacin

Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine.

Antiviral agents:

UNIT – IV

Antifungal agents:

Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin.

Synthetic Antifungal agents: Clotrimazole, Econazole, Butoconazole, Oxiconazole, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*.

Sulphonamides and Sulfoxides

Historical development, chemistry, classification and SAR of Sulphonamides: Sulphamethizole, Sulfisoxazole, Sulphamethizine, Sulfacetamide*, Sulfapyridine, Sulfamethoxazole*, Sulphadiazine, Mefenide acetate, Sulfasalazine.

Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole.

Sulfones:
Dapsone*.

UNIT – V

Introduction to Drug Design

Various approaches used in drug design.

Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet’s electronic parameter, Tafts steric parameter and Hansch analysis.

Pharmacophore modeling and docking techniques.

Combinatorial Chemistry: Concept and applications chemistry of combinatorial: solid phase and solution phase synthesis.
BP607P. MEDICINAL CHEMISTRY - III (Practical)

4 Hours / week

I Preparation of drugs and intermediates
1 Sulphanilamide
2 7-Hydroxy, 4-methyl coumarin
3 Chlorobutanol
4 Triphenyl imidazole
5 Tolbutamide
6 Hexamine

II Assay of drugs
1 Isonicotinic acid hydrazide
2 Chloroquine
3 Metronidazole
4 Dapsone
5 Chlorpheniramine maleate
6 Benzyl penicillin

III Preparation of medicinally important compounds or intermediates by Microwave irradiation technique

IV Drawing structures and reactions using chem draw®

V Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinski’s RO5)

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Semester – VI
PHARMACOLOGY-III
Subject code: BP602T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology.

Objectives: Upon completion of this course the student should be able to:

1. understand the mechanism of drug action and its relevance in the treatment of different infectious diseases
2. comprehend the principles of toxicology and treatment of various poisonings and
3. appreciate correlation of pharmacology with related medical sciences.

Course Content:

UNIT-I
1. Pharmacology of drugs acting on Respiratory system
 a. Anti-asthmatic drugs
 b. Drugs used in the management of COPD
 c. Expectorants and antitussives
 d. Nasal decongestants
 e. Respiratory stimulants

2. Pharmacology of drugs acting on the Gastrointestinal Tract
 a. Antiulcer agents.
 b. Drugs for constipation and diarrhoea.
 c. Appetite stimulants and suppressants.
 d. Digestants and carminatives.
 e. Emetics and anti-ematics.

UNIT-II
3. Chemotherapy
 a. General principles of chemotherapy.
 b. Sulfonamides and cotrimoxazole.
c. Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins, tetracycline and aminoglycosides

UNIT-III
3. Chemotherapy
 a. Antitubercular agents
 b. Antileprotic agents
 c. Antifungal agents
 d. Antiviral drugs
 e. Anthelmintics
 f. Antimalarial drugs
 g. Antiamoebic agents

UNIT-IV
3. Chemotherapy
 l. Urinary tract infections and sexually transmitted diseases.
 m. Chemotherapy of malignancy.

4. Immunopharmacology
 a. Immunostimulants
 b. Immunosuppressant
 Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars

UNIT-V
5. Principles of toxicology
 a. Definition and basic knowledge of acute, subacute and chronic toxicity.
 b. Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity
 c. General principles of treatment of poisoning
 d. Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning.

6. Chronopharmacology
 a. Definition of rhythm and cycles.
 b. Biological clock and their significance leading to chronotherapy.
BP 608 P. PHARMACOLOGY-III (Practical) 4Hrs/Week

1. Dose calculation in pharmacological experiments
2. Antiallergic activity by mast cell stabilization assay
4. Study of effect of drugs on gastrointestinal motility
5. Effect of agonist and antagonists on guinea pig ileum
6. Estimation of serum biochemical parameters by using semi-autoanalyser
7. Effect of saline purgative on frog intestine
8. Insulin hypoglycemic effect in rabbit
9. Test for pyrogens (rabbit method)
10. Determination of acute oral toxicity (LD50) of a drug from a given data
11. Determination of acute skin irritation / corrosion of a test substance
12. Determination of acute eye irritation / corrosion of a test substance
13. Calculation of pharmacokinetic parameters from a given data
14. Biostatistics methods in experimental pharmacology (student’s t test, ANOVA)
15. Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test)

*Experiments are demonstrated by simulated experiments/videos

Recommended Books (Latest Editions)
3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott’s Illustrated Reviews-Pharmacology
9. Kulkarni SK. Handbook of experimental pharmacology, VallabhPrakashan,

138
Semester – VI
HERBAL DRUG TECHNOLOGY
Subject code: BP603T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject gives the student the knowledge of basic understanding of herbal drug industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs.

Objectives: Upon completion of this course the student should be able to:
1. understand raw material as source of herbal drugs from cultivation to herbal drug product
2. know the WHO and ICH guidelines for evaluation of herbal drugs
3. know the herbal cosmetics, natural sweeteners, nutraceuticals
4. appreciate patenting of herbal drugs, GMP.

Course content:

UNIT-I

Herbs as raw materials
Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation
Source of Herbs
Selection, identification and authentication of herbal materials
Processing of herbal raw material

Biodynamic Agriculture
Good agricultural practices in cultivation of medicinal plants including Organic farming.
Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides.

Indian Systems of Medicine
a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy
b) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma.

UNIT-II

Nutraceuticals
General aspects, Market, growth, scope and types of products available in the market. Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.
Study of following herbs as health food: Alfalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina

139
Herbal-Drug and Herb-Food Interactions: General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions: Hypericum, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra.

UNIT-III
Herbal Cosmetics
Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.

Herbal excipients:
Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes.

Herbal formulations:
Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosomes

UNIT-IV
Evaluation of Drugs WHO & ICH guidelines for the assessment of herbal drugs
Stability testing of herbal drugs.

Patenting and Regulatory requirements of natural products:
a) Definition of the terms: Patent, IPR, Farmers right, Breeder’s right, Bioprospecting and Biopiracy
b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem.

Regulatory Issues - Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs.

UNIT-V
General Introduction to Herbal Industry
Herbal drugs industry: Present scope and future prospects.
A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India.

Schedule T – Good Manufacturing Practice of Indian systems of medicine
Components of GMP (Schedule – T) and its objectives
Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.
BP 609 P. HERBAL DRUG TECHNOLOGY (Practical)
4 hours/ week

1. To perform preliminary phytochemical screening of crude drugs.
2. Determination of the alcohol content of Asava and Arista
3. Evaluation of excipients of natural origin
4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation.
5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
6. Monograph analysis of herbal drugs from recent Pharmacopoeias
7. Determination of Aldehyde content
8. Determination of Phenol content
9. Determination of total alkaloids

Recommended Books: (Latest Editions)

1. Textbook of Pharmacognosy by Trease & Evans.
2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
3. Pharmacognosy by Kokate, Purohit and Gokhale
4. Essential of Pharmacognosy by Dr. S.H. Ansari
5. Pharmacognosy & Phytochemistry by V.D. Rangari
6. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy)
Semester – VI
BIOPHARMACEUTICS AND PHARMACOKINETICS
Subject code: BP604T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>External</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arisen therein.

Objectives: Upon completion of the course student shall be able to:

1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.
4. Understand various pharmacokinetic parameters, their significance & applications.

Course Content:

UNIT-I
Introduction to Biopharmaceutics
Absorption: Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes, **Distribution** Tissue permeability of drugs, binding of drugs, apparent, volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs

UNIT- II
Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non renal routes of drug excretion of drugs

Bioavailability and Bioequivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, *in-vitro* drug dissolution models, *in-vitro-in-vivo* correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.
UNIT- III
Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model. (a). Intravenous Injection (Bolus) (b). Intravenous infusion and (c) Extra vascular administrations. Pharmacokinetics parameters - \(K_e \), t1/2, Vd, AUC, Ka, Clt and \(CL_R \) - definitions methods of eliminations, understanding of their significance and application

UNIT- IV
Multicomartment models: Two compartment open model. IV bolus Kinetics of multiple dosing, steady state drug levels, calculation of loading and mainetnance doses and their significance in clinical settins.

UNIT- V
Nonlinear Pharmacokinetics: a. Introduction, b. Factors causing Non-linearity. c. Michaelis-menton method of estimating parameters, Explanation with example of drugs.

Recommended Books: (Latest Editions)

1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari
5. Pharmacokinetics: By Milo Gilbaldi Donald, R. Mercel Dekker Inc.
6. Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press.
7. Biopharmaceutics; By Swarbrick
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope:
- Biotechnology has a long promise to revolutionize the biological sciences and technology.
- Scientific application of biotechnology in the field of genetic engineering, medicine and fermentation technology makes the subject interesting.
- Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs.
- Biotechnology has already produced transgenic crops and animals and the future promises lot more.
- It is basically a research-based subject.

Objectives: Upon completion of the subject student shall be able to;
1. Understanding the importance of Immobilized enzymes in Pharmaceutical Industries
2. Genetic engineering applications in relation to production of pharmaceuticals
3. Importance of Monoclonal antibodies in Industries
4. Appreciate the use of microorganisms in fermentation technology

Unit I

| Hours | 10 |

a) Brief introduction to Biotechnology with reference to Pharmaceutical Sciences.
b) Enzyme Biotechnology- Methods of enzyme immobilization and applications.
c) Biosensors- Working and applications of biosensors in Pharmaceutical Industries.
d) Brief introduction to Protein Engineering.
e) Use of microbes in industry. Production of Enzymes- General consideration - Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase.
f) Basic principles of genetic engineering.

Unit II

| Hours | 10 |

a) Study of cloning vectors, restriction endonucleases and DNA ligase.
b) Recombinant DNA technology. Application of genetic engineering in medicine.
c) Application of r DNA technology and genetic engineering in the production of:
 i) Interferon ii) Vaccines- hepatitis- B iii) Hormones-Insulin.
 d) Brief introduction to PCR

Unit III
10 Hours

Types of immunity- humoral immunity, cellular immunity
 a) Structure of Immunoglobulins
 b) Structure and Function of MHC
 c) Hypersensitivity reactions, Immune stimulation and Immune suppressions.
 d) General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity.
 e) Storage conditions and stability of official vaccines
 f) Hybridoma technology- Production, Purification and Applications
 g) Blood products and Plasma Substituties.

Unit IV
08Hours

a) Immuno blotting techniques- ELISA, Western blotting, Southern blotting.
b) Genetic organization of Eukaryotes and Prokaryotes
c) Microbial genetics including transformation, transduction, conjugation, plasmids and transposons.
d) Introduction to Microbial biotransformation and applications.
e) Mutation: Types of mutation/mutants.

Unit V
07 Hours

a) Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring.
b) Large scale production fermenter design and its various controls.
c) Study of the production of - penicillins, citric acid, Vitamin B12, Glutamic acid, Griseofulvin,
d) Blood Products: Collection, Processing and Storage of whole human blood, dried human plasma, plasma Substituties.
Recommended Books (Latest edition):

2. RA Goldshy et. al.,: Kuby Immunology.
Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs.

Objectives: Upon completion of the course student shall be able to:
- understand the cGMP aspects in a pharmaceutical industry
- appreciate the importance of documentation
- understand the scope of quality certifications applicable to pharmaceutical industries
- understand the responsibilities of QA & QC departments

Course content:

UNIT – I
Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance and GMP
Total Quality Management (TQM): Definition, elements, philosophies
ICH Guidelines: purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines
Quality by design (QbD): Definition, overview, elements of QbD program, tools
ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration
NABL accreditation : Principles and procedures

UNIT - II
Organization and personnel: Personnel responsibilities, training, hygiene and personal records.
Premises: Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination.

UNIT – III
Quality Control: Quality control test for containers, rubber closures and secondary packing
materials.

UNIT – IV 08 Hours
Complaints: Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal.

Document maintenance in pharmaceutical industry: Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records.

UNIT – V 07 Hours
Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Warehousing: Good warehousing practice, materials management

Recommended Books: (Latest Edition)

4. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh
5. How to Practice GMP’s – P P Sharma.
6. ISO 9000 and Total Quality Management – Sadhank G Ghosh
7. The International Pharmacopoeia – Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosage forms
8. Good laboratory Practices – Marcel Deckker Series
9. ICH guidelines, ISO 9000 and 14000 guidelines
Objective of the Course
➢ Basic Understanding of Corporate finance function, Financing decision and Function in corporate finance

Student Learning Outcomes/ Objectives
➢ Students will aware about Working capital estimation and management, Venture capital financing, corporate strategy, financial policy and shareholder value creating etc.

Course Content:

UNIT II Investment decision making: Estimating free cash flows, cost of capital decision rules, capital budgeting rules to projects when facing capital rationing constraints. Capital structural planning operating and financial leverage; Capital structure theories and value of firm; Capital structure planning and policy; Cost of capital, capital structure and value of firm.

UNIT III Financing decision: Hybrid securities namely convertible and non-convertible debentures, deep discount bonds, warrants, secured premium notes. Asset-based financing leasing, hire purchase. Dividend policy- dividend theories, determination of dividend policy, share buyback, retention of profits, dividend policy studies in India.
UNIT IV Venture capital financing: Concept, developments in India, process and method of financing, fiscal incentives, debt securitization. 5 Hours

UNIT V Working capital estimation and management: Operating cycle concept, managing cash and cash equivalents, managing inventory, managing accounts receivables, managing payables. Working capital financing trade credit, bank finance, commercial paper, factoring, money market structures and recent developments. 7 Hours

UNIT VI Valuation of M &A projects: Economics of M&A, methods of valuation NAV, PECV, MPS, EPS. 5 Hours

UNIT VII Corporate strategy, financial policy and shareholder value creating: Link between corporate strategy and financial strategy, implications for capital structure, dividend policy and capital budgeting policy of each corporate strategy. 5 Hours

Reference Books

2. Financial Management: Theory and Practice by Prasanna Chandra
3. Principles of Managerial Finance by Lawrence J Gitman
4. Financial Management by R P Rastogi
5. Financial Management by Ravi M. Kishore
6. Financial Management: Principles and Practices by Dr. S N Maheshwari
7. Financial Management by M Y Khan and P K Jain
8. Financial Management by I M Pandey
10. Principles of Corporate Finance by Richard A. Brealey and Stewart C. Myers
11. Financial Statement Analysis by George Foster
12. Modern Corporate Finance by Alan C Shapiro and Sheldon D. Balbirer
13. Creating Value from Mergers and Acquisitions: The Challenges by Sudi Sudarsanam

Journals and Magazines:
15. Vikalpa (IIM, Ahmedabad)
16. Decision (IIM, Calcutta)
17. Vision (MDI, Gurgaon)
18. Chartered Accountant (ICAI, New Delhi)
19. Management Accountant (ICWAI, now ICAI)
20. Finance and Development (IMF)
21. Capital Market
22. Outlook Business
SEMESTER VII
Semester – VII
INSTRUMENTAL METHOD OF ANALYSIS
Subject code: BP701T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to
1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis
2. Understand the chromatographic separation and analysis of drugs.
3. Perform quantitative & qualitative analysis of drugs using various analytical instruments.

Course Content:

UNIT –I

10 Hours

UV Visible spectroscopy
Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert’s law, Derivation and deviations.

Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.

Applications - Spectrophotometric titrations, Single component and multi component analysis

Fluorimetry
Theory, Concepts of singlet, doublet and triplet electronic states, internal and
external conversions, factors affecting fluorescence, quenching, instrumentation and applications

UNIT –II 10 Hours

IR spectroscopy

Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations

Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications

Flame Photometry-Principle, interferences, instrumentation and applications

Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications

Nepheloturbidometry- Principle, instrumentation and applications

UNIT –III 10 Hours

Introduction to chromatography

Adsorption and partition column chromatography-Methodology, advantages, disadvantages and applications.

Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

Paper chromatography-Introduction, methodology, development techniques, advantages, disadvantages and applications

Electrophoresis– Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications

UNIT –IV 08 Hours

Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications

High performance liquid chromatography (HPLC)-Introduction, theory, instrumentation, advantages and applications.

UNIT –V 07 Hours

Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications

Gel chromatography- Introduction, theory, instrumentation and
Affinity chromatography - Introduction, theory, instrumentation and applications

BP705P. INSTRUMENTAL METHODS OF ANALYSIS (Practical)

4 Hours/Week

1. Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds
2. Estimation of dextrose by colorimetry
3. Estimation of sulfanilamide by colorimetry
4. Simultaneous estimation of ibuprofen and paracetamol by UV spectroscopy
5. Assay of paracetamol by UV- Spectrophotometry
6. Estimation of quinine sulfate by fluorimetry
7. Study of quenching of fluorescence
8. Determination of sodium by flame photometry
9. Determination of potassium by flame photometry
10. Determination of chlorides and sulphates by nephelometric turbidimetry
11. Separation of amino acids by paper chromatography
12. Separation of sugars by thin layer chromatography
13. Separation of plant pigments by column chromatography
14. Demonstration experiment on HPLC
15. Demonstration experiment on Gas Chromatography

Recommended Books (Latest Editions)

1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
Semester – VII
INDUSTRIAL PHARMACY II
Subject code: BP702T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market

Objectives: Upon completion of the course, the student shall be able to:

1. Know the process of pilot plant and scale up of pharmaceutical dosage forms
2. Understand the process of technology transfer from lab scale to commercial batch
3. Know different Laws and Acts that regulate pharmaceutical industry
4. Understand the approval process and regulatory requirements for drug products

Course Content:

UNIT-I

Pilot plant scale up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology

UNIT-II

Technology development and transfer: WHO guidelines for Technology Transfer(TT): Terminology, Technology transfer protocol, Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), Granularity of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; TT related documentation - confidentiality agreement, licensing, MoUs, legal issues

UNIT-III

Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals

UNIT-IV 08 Hours

Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, Quality by Design (QbD), Six Sigma concept, Out of Specifications (OOS), Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP

UNIT-V 07 Hours

Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO) and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs.

Recommended Books: (Latest Editions)

Semester – VII
INSTRUMENTAL METHOD OF ANALYSIS
Subject code: BP703T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Theory External</td>
</tr>
<tr>
<td>Practical</td>
<td>Theory Internal</td>
</tr>
<tr>
<td>Total</td>
<td>Practicals External</td>
</tr>
<tr>
<td></td>
<td>Practicals Internal</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up.

Objectives: Upon completion of the course, the student shall be able to

1. know various drug distribution methods in a hospital
2. appreciate the pharmacy stores management and inventory control
3. monitor drug therapy of patient through medication chart review and clinical review
4. obtain medication history interview and counsel the patients
5. identify drug related problems
6. detect and assess adverse drug reactions
7. interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states
8. know pharmaceutical care services
9. do patient counseling in community pharmacy;
10. appreciate the concept of Rational drug therapy.

Unit I: 10 Hours
a) Hospital and it’s organization
 Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non-clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions.

b) Hospital pharmacy and its organization
 Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists.

c) Adverse drug reaction
Classifications - Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs, Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting drug interactions, spontaneous case reports and record linkage studies, and Adverse drug reaction reporting and management.

d) Community Pharmacy
Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store, Dispensing of proprietary products, maintenance of records of retail and wholesale drug store.

Unit II: 10 Hours
a) Drug distribution system in a hospital
Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs.

b) Hospital formulary
Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary.

c) Therapeutic drug monitoring
Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring.

d) Medication adherence
Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence.

e) Patient medication history interview
Need for the patient medication history interview, medication interview forms.

f) Community pharmacy management
Financial, materials, staff, and infrastructure requirements.

Unit III: 10 Hours
a) Pharmacy and therapeutic committee
Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop
order, and emergency drug list preparation.

b) Drug information services
Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information.

c) Patient counseling
Definition of patient counseling; steps involved in patient counseling, and Special cases that require the pharmacist

d) Education and training program in the hospital
Role of pharmacist in the education and training program, Internal and external training program, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community health education.

e) Prescribed medication order and communication skills
Prescribed medication order- interpretation and legal requirements, and Communication skills- communication with prescribers and patients.

Unit IV

a) Budget preparation and implementation
Budget preparation and implementation

b) Clinical Pharmacy
Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care.
Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern.

c) Over the counter (OTC) sales
Introduction and sale of over the counter, and Rational use of common over the counter medications.

Unit V

a) Drug store management and inventory control
Organisation of drug store, types of materials stocked and storage conditions, Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level, and Methods used for the analysis of the drug expenditure
b) Investigational use of drug
Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee.

c) Interpretation of Clinical Laboratory Tests
Blood chemistry, hematology, and urinalysis

Recommended Books (Latest Edition):

5. Scott LT. *Basic skills in interpreting laboratory data*, 4thed. American Society of Health System Pharmacists Inc; 2009.

Journals:

1. Therapeutic drug monitoring. ISSN: 0163-4356
2. Journal of pharmacy practice. ISSN : 0974-8326
3. American journal of health system pharmacy. ISSN: 1535-2900 (online)
4. Pharmacy times (Monthly magazine)
Semester – VII
INSTRUMENTAL METHOD OF ANALYSIS
Subject code: BP704T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart basic knowledge on the area of novel drug delivery systems.

Objectives: Upon completion of the course student shall be able

1. To understand various approaches for development of novel drug delivery systems.
2. To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation

Course content:

Unit-I

Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates. Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles. Physicochemical and biological properties of drugs relevant to controlled release formulations

Polymers: Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems.

Unit-II

Microencapsulation: Definition, advantages and disadvantages, microspheres/microcapsules, microparticles, methods of microencapsulation, applications

Mucosal Drug Delivery system: Introduction, Principles of bioadhesion/mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems

Implantable Drug Delivery Systems: Introduction, advantages and disadvantages, concept of implants and osmotic pump

Unit-III

Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches

Gastroretentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastroadhesive systems and their applications

Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of
drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers

Unit-IV

Targeted drug Delivery: Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications

Unit-V

Ocular Drug Delivery Systems: Introduction, intraocular barriers and methods to overcome –Preliminary study, ocular formulations and ocuserts

Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages, development of intrauterine devices (IUDs) and applications

Recommended Books: (Latest Editions)

Journals

1. Indian Journal of Pharmaceutical Sciences (IPA)
2. Indian Drugs (IDMA)
3. Journal of Controlled Release (Elsevier Sciences)
4. Drug Development and Industrial Pharmacy (Marcel & Decker)
5. International Journal of Pharmaceutics (Elsevier Sciences)
Objective of the Course:

- Basic Understanding of Materials planning, production and operations management, Facilities planning and Layout of manufacturing /service facility.

Student Learning Outcomes/ Objectives:

- Students will understand Product layout, process layout, Integrated materials management, production and operations management etc.

Course Content:

UNIT I Integrated materials management: Concept, need, definition, and scope and advantages. 5 Hours

UNIT II Materials planning: Need and definition, factors affecting planning, external and internal, purchasing and materials planning, techniques of planning, guidelines of planning. 5 Hours

UNIT III Materials identification and standardization: Classification of materials, codification systems, standardization. 6 Hours

UNIT IV Inventory control: Importance and scope, costs, economic order quantity; Inventory control techniques. 4 Hours

UNIT V Introduction to production and operations management: Evaluation of Production / operations management; Nature of production/operations management; Production function and it environment, functions of production /operations manager, organization of production function. 8 Hours

UNIT VI Facilities planning: Product selection and design, service design, process and technology selection, location of manufacturing / service facility, center of gravity and median models, dimensional analysis, Brown and Gibson model. 7 Hours
UNIT VII Layout of manufacturing /service facility: Product layout, 5 Hours process layout, fixed position and group layout, layout design; Relationship based and load-distance cost matrix, materials handling concepts.

UNIT VIII Production planning and control: Aggregate production 5 Hours planning, materials requirement planning, operations scheduling and production, activity control for mass manufacturing, batch processing and job shop.

Reference Books
1) Operations Research by Kalavathy, S.
2) Operations Research by Kapoor, V.K.
3) Operations Research by Paneerselvam, R.
4) Operations Research: Theory and Applications by Sharma, J.K.
5) Operations Research: An Introduction by Taha, H.A.
6) Operations Management by Bernard Taylor
7) Production and Operations Management by Adam, Ronald and Ebert
8) Production and Operations Management by Aswathappa and Bhat.
SEMESTER VIII
Semester – VIII
BIOSTATISTICS AND RESEARCH METHODOLOGY
Subject code: BP801T
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>External</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software’s, analyzing the statistical data using Excel.

Objectives: Upon completion of the course the student shall be able to
- Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment)
- Know the various statistical techniques to solve statistical problems
- Appreciate statistical techniques in solving the problems.

Course content:

Unit-I 10 Hours
Introduction: Statistics, Biostatistics, Frequency distribution
Measures of central tendency: Mean, Median, Mode- Pharmaceutical examples
Measures of dispersion: Dispersion, Range, standard deviation, Pharmaceutical problems
Correlation: Definition, Karl Pearson’s coefficient of correlation, Multiple correlation - Pharmaceuticals examples

Unit-II 10 Hours
Regression: Curve fitting by the method of least squares, fitting the lines $y = a + bx$ and $x = a + by$, Multiple regression, standard error of regression – Pharmaceutical Examples
Probability: Definition of probability, Binomial distribution, Normal distribution, Poisson’s distribution, properties - problems
Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Error-I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples
Parametric test: t-test(Sample, Pooled or Unpaired and Paired), ANOVA, (One way and Two way), Least Significance difference
Unit-III 10 Hours
Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test
Introduction to Research: Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism
Graphs: Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph
Designing the methodology: Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases.

Unit-IV 8 Hours
Blocking and confounding system for Two-level factorials
Regression modeling: Hypothesis testing in Simple and Multiple regression models
Introduction to Practical components of Industrial and Clinical Trials Problems: Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Online Statistical Software’s to Industrial and Clinical trial approach

Unit-V 7Hours
Design and Analysis of experiments
Factorial Design: Definition, 2^2, 2^3 design. Advantage of factorial design
Response Surface methodology: Central composite design, Historical design, Optimization Techniques

Recommended Books (Latest edition):

Semester – VIII
SOCIAL AND PREVENTIVE PHARMACY
Subject Code: BP802T
Theory (3 Hours/Wk; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope:
The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed.

Objectives:
After the successful completion of this course, the student shall be able to:

- Acquire high consciousness/realization of current issues related to health and pharmaceutical problems within the country and worldwide.
- Have a critical way of thinking based on current healthcare development.
- Evaluate alternative ways of solving problems related to health and pharmaceutical issues

Course content:

Unit I: 10 Hours
Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick.

Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention.

Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health

Hygiene and health: personal hygiene and health care; avoidable habits

Unit II: 10 Hours
Preventive medicine: General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension,
diabetes mellitus, cancer, drug addiction-drug substance abuse

Unit III: 10 Hours
National health programs, its objectives, functioning and outcome of the following: HIV AND AIDS control programme, TB, Integrated disease surveillance program (IDSP), National leprosy control programme, National mental health program, National programme for prevention and control of deafness, Universal immunization programme, National programme for control of blindness, Pulse polio programme.

Unit IV: 08 Hours
National health intervention programme for mother and child, National family welfare programme, National tobacco control programme, National Malaria Prevention Program, National programme for the health care for the elderly, Social health programme; role of WHO in Indian national program

Unit V: 07 Hours
Community services in rural, urban and school health: Functions of PHC, Improvement in rural sanitation, national urban health mission, Health promotion and education in school.

Recommended Books (Latest edition):

6. Community Pharmacy Practice, Ramesh Adepu, BSP publishers, Hyderabad

Recommended Journals:

1. Research in Social and Administrative Pharmacy, Elsevier, Ireland
Scope: The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management.

Course Objective: The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry.

Unit I 10 Hours
Marketing:
Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; Analyzing consumer buying behavior; industrial buying behavior.

Pharmaceutical market:
Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation& targeting.Consumer profile; Motivation and prescribing habits of the physician; patients’ choice of physician and retail pharmacist. Analyzing the Market; Role of market research.

Unit II 10 Hours
Product decision:
Classification, product line and product mix decisions, product life cycle, product portfolio analysis; product positioning; New product decisions; Product branding, packaging and labeling decisions, Product management in pharmaceutical industry.

Unit III 10 Hours
Promotion:
Methods, determinants of promotional mix, promotional budget; An overview of
personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products.

Unit IV

Pharmaceutical marketing channels:
Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management.

Professional sales representative (PSR):
Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR.

Unit V

Pricing:
Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry. An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority).

Emerging concepts in marketing:
Vertical & Horizontal Marketing; Rural Marketing; Consumerism; Industrial Marketing; Global Marketing.

Recommended Books: (Latest Editions)
1. Philip Kotler and Kevin Lane Keller: Marketing Management, Prentice Hall of India, New Delhi
Semester – VIII
PHARMACEUTICAL REGULATORY SCIENCE
Subject code: BP804ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia, UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products.

Objectives: Upon completion of the subject student shall be able to;

1. Know about the process of drug discovery and development
2. Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
3. Know the regulatory approval process and their registration in Indian and international markets

Course content:

Unit I
10 Hours
New Drug Discovery and development
Stages of drug discovery, Drug development process, pre-clinical studies, non-clinical activities, clinical studies, Innovator and generics, Concept of generics, Generic drug product development.

Unit II
10 Hours
Regulatory Approval Process
Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA.
Regulatory authorities and agencies
Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications)

Unit III
10 Hours
Registration of Indian drug product in overseas market

Unit IV 08 Hours

Clinical trials

Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee - formation and working procedures, Informed consent process and procedures, GCP obligations of Investigators, sponsors & Monitors, Managing and Monitoring clinical trials, Pharmacovigilance - safety monitoring in clinical trials

Unit V 07 Hours

Regulatory Concepts

Recommended books (Latest edition):

1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Niral Prakashan.
9. Drugs: From Discovery to Approval, Second Edition By Rick Ng
Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions.

Objectives:

At completion of this paper it is expected that students will be able to (know, do, and appreciate):

1. Why drug safety monitoring is important?
2. History and development of pharmacovigilance
3. National and international scenario of pharmacovigilance
4. Dictionaries, coding and terminologies used in pharmacovigilance
5. Detection of new adverse drug reactions and their assessment
6. International standards for classification of diseases and drugs
7. Adverse drug reaction reporting systems and communication in pharmacovigilance
8. Methods to generate safety data during pre clinical, clinical and post approval phases of drugs’ life cycle
9. Drug safety evaluation in paediatrics, geriatrics, pregnancy and lactation
10. Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India
11. ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning
12. CIOMS requirements for ADR reporting
13. Writing case narratives of adverse events and their quality.

Course Content

Unit I

Introduction to Pharmacovigilance

- History and development of Pharmacovigilance
- Importance of safety monitoring of Medicine
- WHO international drug monitoring programme
- Pharmacovigilance Program of India(PvPI)

Introduction to adverse drug reactions

- Definitions and classification of ADRs
• Detection and reporting
• Methods in Causality assessment
• Severity and seriousness assessment
• Predictability and preventability assessment
• Management of adverse drug reactions

Basic terminologies used in pharmacovigilance

• Terminologies of adverse medication related events
• Regulatory terminologies

Unit II

Drug and disease classification

• Anatomical, therapeutic and chemical classification of drugs
• International classification of diseases
• Daily defined doses
• International Non proprietary Names for drugs

Drug dictionaries and coding in pharmacovigilance

• WHO adverse reaction terminologies
• MedDRA and Standardised MedDRA queries
• WHO drug dictionary
• Eudravigilance medicinal product dictionary

Information resources in pharmacovigilance

• Basic drug information resources
• Specialised resources for ADRs

Establishing pharmacovigilance programme

• Establishing in a hospital
• Establishment & operation of drug safety department in industry
• Contract Research Organisations (CROs)
• Establishing a national programme

Unit III

Vaccine safety surveillance

• Vaccine Pharmacovigilance
• Vaccination failure
• Adverse events following immunization

Pharmacovigilance methods

• Passive surveillance – Spontaneous reports and case series
• Stimulated reporting
• Active surveillance – Sentinel sites, drug event monitoring and registries
• Comparative observational studies – Cross sectional study, case control study and cohort study
• Targeted clinical investigations

Communication in pharmacovigilance

• Effective communication in Pharmacovigilance
• Communication in Drug Safety Crisis management
• Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media

Unit IV 8 Hours
Safety data generation
• Pre clinical phase
• Clinical phase
• Post approval phase (PMS)
ICH Guidelines for Pharmacovigilance
• Organization and objectives of ICH
• Expedited reporting
• Individual case safety reports
• Periodic safety update reports
• Post approval expedited reporting
• Pharmacovigilance planning
• Good clinical practice in pharmacovigilance studies

Unit V 7 hours
Pharmacogenomics of adverse drug reactions
• Genetics related ADR with example focusing PK parameters.
Drug safety evaluation in special population
• Paediatrics
• Pregnancy and lactation
• Geriatrics
CIOMS
• CIOMS Working Groups
• CIOMS Form
CDSCO (India) and Pharmacovigilance
• D&C Act and Schedule Y
• Differences in Indian and global pharmacovigilance requirements

Recommended Books (Latest edition):
2. Practical Drug Safety from A to Z By Barton Cobert, Pierre Biron, Jones and Bartlett Publishers.
9. National Formulary of India
10. Text Book of Medicine by Yashpal Munjal
 Text book of Pharmacovigilance: concept and practice by GP Mohanta and PK Manna
Semester – VIII
QUALITY CONTROL AND STANDARDIZATION OF HERBALS
Subject code: BP806ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: In this subject the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines.

Objectives: Upon completion of the subject student shall be able to;

1. know WHO guidelines for quality control of herbal drugs
2. know Quality assurance in herbal drug industry
3. know the regulatory approval process and their registration in Indian and international markets
4. appreciate EU and ICH guidelines for quality control of herbal drugs

Unit I
10 hours
Basic tests for drugs – Pharmaceutical substances, Medicinal plants materials and dosage forms
WHO guidelines for quality control of herbal drugs. Evaluation of commercial crude drugs intended for use

Unit II
10 hours
Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine.

WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines WHO Guidelines on GACP for Medicinal Plants.

Unit III
10 hours
EU and ICH guidelines for quality control of herbal drugs.
Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines

Unit IV
08 hours
Stability testing of herbal medicines. Application of various chromatographic techniques in standardization of herbal products.
Preparation of documents for new drug application and export registration GMP requirements and Drugs & Cosmetics Act provisions.

Unit V 07 hours
Regulatory requirements for herbal medicines.
WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems
Comparison of various Herbal Pharmacopoeias.
Role of chemical and biological markers in standardization of herbal products

Recommended Books: (Latest Editions)
1. Pharmacognosy by Trease and Evans
2. Pharmacognosy by Kokate, Purohit and Gokhale
5. EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products.
Semester – VIII
COMPUTER AIDED DRUG DESIGN
Subject code: BP807ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process.

Objectives: Upon completion of the course, the student shall be able to understand
- Design and discovery of lead molecules
- The role of drug design in drug discovery process
- The concept of QSAR and docking
- Various strategies to develop new drug like molecules.
- The design of new drug molecules using molecular modeling software

Course Content:

UNIT-I 10 Hours
Introduction to Drug Discovery and Development
Stages of drug discovery and development

Lead discovery and Analog Based Drug Design
Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation.

Analog Based Drug Design: Bioisosterism, Classification, Bioisosteric replacement. Any three case studies

UNIT-II 10 Hours
Quantitative Structure Activity Relationship (QSAR)
SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet’s substituent constant and Tafts steric constant. Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.

UNIT-III 10 Hours
Molecular Modeling and virtual screening techniques
Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening.
Molecular docking: Rigid docking, flexible docking, manual docking, Docking based screening. *De novo* drug design.

UNIT-IV

Informatics & Methods in drug design
Introduction to Bioinformatics, chemoinformatics. ADME databases, chemical, biochemical and pharmaceutical databases.

UNIT-V

Molecular Modeling: Introduction to molecular mechanics and quantum mechanics. Energy Minimization methods and Conformational Analysis, global conformational minima determination.

Recommended Books (Latest Editions)

Semester – VIII
CELL AND MOLECULAR BIOLOGY
Subject code: BP808ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope:
- Cell biology is a branch of biology that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function.
- This is done both on a microscopic and molecular level.
- Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organismssuch as humans, plants, and sponges.

Objectives: Upon completion of the subject student shall be able to;
- Summarize cell and molecular biology history.
- Summarize cellular functioning and composition.
- Describe the chemical foundations of cell biology.
- Summarize the DNA properties of cell biology.
- Describe protein structure and function.
- Describe cellular membrane structure and function.
- Describe basic molecular genetic mechanisms.
- Summarize the Cell Cycle

Course content:

Unit I
10 Hours
a) Cell and Molecular Biology: Definitions theory and basics and Applications.
b) Cell and Molecular Biology: History and Summation.
c) Properties of cells and cell membrane.
d) Prokaryotic versus Eukaryotic
e) Cellular Reproduction
f) Chemical Foundations – an Introduction and Reactions (Types)

Unit II
10 Hours
a) DNA and the Flow of Molecular Information
b) DNA Functioning
c) DNA and RNA
d) Types of RNA
 e) Transcription and Translation

Unit III 10 Hours
 a) Proteins: Defined and Amino Acids
 b) Protein Structure
 c) Regularities in Protein Pathways
 d) Cellular Processes
 e) Positive Control and significance of Protein Synthesis

Unit IV 08 Hours
 a) Science of Genetics
 b) Transgenics and Genomic Analysis
 c) Cell Cycle analysis
 d) Mitosis and Meiosis
 e) Cellular Activities and Checkpoints

Unit V 07 Hours
 a) Cell Signals: Introduction
 b) Receptors for Cell Signals
 c) Signaling Pathways: Overview
 d) Misregulation of Signaling Pathways
 e) Protein-Kinases: Functioning

Recommended Books (latest edition):
5. Rose: Industrial Microbiology.
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
10. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
11. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company
13. RA Goldshy et. al., : Kuby Immunology.
Semester – VIII
COSMETIC SCIENCE
Subject code: BP809ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

UNIT I
10 Hours
Classification of cosmetic and cosmeceutical products
Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs
Cosmetic excipients: Surfactants, rheology modifiers, humectants, emollients, preservatives. Classification and application
Skin: Basic structure and function of skin.
Hair: Basic structure of hair. Hair growth cycle.
Oral Cavity: Common problem associated with teeth and gums.

UNIT II
10 Hours
Principles of formulation and building blocks of skin care products:
Face wash, Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages. Application of these products in formulation of cosmeceuticals. Antipersprants & deodorants- Actives & mechanism of action.
Principles of formulation and building blocks of Hair care products:
Conditioning shampoo, Hair conditioner, anti-dandruff shampoo.
Hair oils.

UNIT III
10 Hours
Sun protection, Classification of Sunscreens and SPF.
Role of herbs in cosmetics: Skin
Care: Aloe and turmeric
Hair care: Henna and amla. Oral care:
Neem and clove
Analytical cosmetics: BIS specification and analytical methods for shampoo, skin-
cream and toothpaste.

UNIT IV

UNIT V
08 Hours.
Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis. Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odor. Antiperspirants and Deodorants- Actives and mechanism of action

References

Semester – VIII
PHARMACOLOGICAL SCREENING METHODS
Subject code: BP810ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>External</td>
</tr>
<tr>
<td>75</td>
<td>Internal</td>
</tr>
<tr>
<td>External</td>
<td>Practical</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Internal</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results.

Objectives
Upon completion of the course the student shall be able to,
- Appreciate the applications of various commonly used laboratory animals.
- Appreciate and demonstrate the various screening methods used in preclinical research
- Appreciate and demonstrate the importance of biostatistics and research methodology
- Design and execute a research hypothesis independently

Unit – I

Laboratory Animals:
Study of CPCSEA and OECD guidelines for maintenance, breeding and conduct of experiments on laboratory animals, Common lab animals: Description and applications of different species and strains of animals. Popular transgenic and mutant animals.

Techniques for collection of blood and common routes of drug administration in laboratory animals, Techniques of blood collection and euthanasia.

Unit – II

preclinical screening models

a. Introduction: Dose selection, calculation and conversions, preparation of drug solution/suspensions, grouping of animals and importance of sham negative and positive control groups. Rationale for selection of animal species and sex for the study.

b. **Study of screening animal models for**
Diuretics, nootropics, anti-Parkinson’s, antiasthmatics,

Preclinical screening models: for CNS activity- analgesic, antipyretic, anti-inflammatory, general anaesthetics, sedative and hypnotics, antipsychotic, antidepressant, antiepileptic, antiparkinsonism, alzheimer’s disease
Unit –III

Preclinical screening models: for ANS activity, sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics, skeletal muscle relaxants, drugs acting on eye, local anaethetics

Unit –IV

Preclinical screening models: for CVS activity- antihypertensives, diuretics, antiarrhythmic, antidysepidemic, anti aggregatory, coagulants, and anticoagulants
Preclinical screening models for other important drugs like antiulcer, antidiabetic, anticancer and antiasthmatics.

Research methodology and Bio-statistics

- Selection of research topic, review of literature, research hypothesis and study design
- Pre-clinical data analysis and interpretation using Students ‘t’ test and One-way ANOVA. Graphical representation of data

<table>
<thead>
<tr>
<th>Research methodology and Bio-statistics</th>
<th>05 Hours</th>
</tr>
</thead>
</table>

Recommended Books (latest edition):

1. Fundamentals of experimental Pharmacology-by M.N.Ghosh
3. CPCSEA guidelines for laboratory animal facility.
4. Drug discovery and Evaluation by Vogel H.G.
5. Drug Screening Methods by Suresh Kumar Gupta and S. K. Gupta
6. Introduction to biostatistics and research methods by PSS Sundar Rao and J Richard
Semester – VIII
ADVANCED INSTRUMENTATION TECHNIQUES
Subject code: BP811ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to
- understand the advanced instruments used and its applications in drug analysis
- understand the chromatographic separation and analysis of drugs.
- understand the calibration of various analytical instruments
- know analysis of drugs using various analytical instruments.

Course Content:

UNIT-I 10 Hours
Nuclear Magnetic Resonance spectroscopy
Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications

Mass Spectrometry- Principles, Fragmentation, Ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers-Time of flight and Quadrupole, instrumentation, applications

UNIT-II 10 Hours
Thermal Methods of Analysis: Principles, instrumentation and applications of Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC)

X- Ray Diffraction Methods: Origin of X-rays, basic aspects of crystals, X-ray Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications.
UNIT-III
Calibration and validation - as per ICH and USFDA guidelines
Calibration of following Instruments
Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer, Fluorimeter, Flame Photometer, HPLC and GC

UNIT-IV
Radio immune assay: Importance, various components, Principle, different methods, Limitation and Applications of Radio immuno assay
Extraction techniques: General principle and procedure involved in the solid phase extraction and liquid-liquid extraction

UNIT-V
Hyphenated techniques - LC-MS/MS, GC-MS/MS, HPTLC-MS.

Recommended Books (Latest Editions)
1. Instrumental Methods of Chemical Analysis by B.K Sharma
2. Organic spectroscopy by Y.R Sharma
3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A.I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J.B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
Semester – VIII
DIETARY SUPPLEMENTS AND NUTRACEUTICALS
Subject code: BP812ET
Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>Tutorial</td>
<td>Practical</td>
</tr>
<tr>
<td>Practical</td>
<td>Total</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scope:

This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population.

Objective:

This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to:

1. Understand the need of supplements by the different group of people to maintain healthy life.
2. Understand the outcome of deficiencies in dietary supplements.
3. Appreciate the components in dietary supplements and the application.
4. Appreciate the regulatory and commercial aspects of dietary supplements including health claims.

UNIT I
07 hours

a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc.

b. Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community.

c. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds

UNIT II
15 hours

Phytochemicals as nutraceuticals: Occurrence and characteristic features(chemical nature medicinal benefits) of following

a) Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, leutin
b) Sulfides: Diallyl sulfides, Allyl trisulfide.

c) Polyphenolics: Reservetrol
d) Flavonoids- Rutin , Naringin, Quercitin, Anthocyanidins, catechins, Flavones
e) Prebiotics / Probiotics: Fructo oligosaccharides, Lactobacillus
f) Phytoestrogens: Isoflavones, daidzein, Gebeustin, lignans
g) Tocopherols
h) Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, sea foods, coffee, tea and the like.

UNIT III 07 hours
a) Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, nucleic acids.
b) Dietary fibres and complex carbohydrates as functional food ingredients.

UNIT IV 10 hours
b) Antioxidants: Endogenous antioxidants – enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, α- Lipoic acid, melatonin
Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole.
c) Functional foods for chronic disease prevention

UNIT V 06 hours
a) Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals.
b) Regulatory Aspects: FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.
c) Pharmacopoeial Specifications for dietary supplements and nutraceuticals.

References:

1. Dietetics by Sri Lakshmi
2. Role of dietary fibres and nutraceuticals in preventing diseases by K.T Agusti and P.Faizal: BSPublication.
Semester – VIII
PHARMACEUTICAL PRODUCT DEVELOPMENT

Theory (3 Hours / Week; 4 Credits, 45 Hours)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Tutorial</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Unit-I 10 Hours
Introduction to pharmaceutical product development, objectives, regulations related to preformulation, formulation development, stability assessment, manufacturing and quality control testing of different types of dosage forms

Unit-II 10 Hours
An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories
i. Solvents and solubilizers
ii. Cyclodextrins and their applications
iii. Non-ionic surfactants and their applications
iv. Polyethylene glycols and sorbitols
v. Suspending and emulsifying agents
vi. Semi solid excipients

Unit-III 10 Hours
An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories
i. Tablet and capsule excipients
ii. Directly compressible vehicles
iii. Coat materials
iv. Excipients in parenteral and aerosols products
v. Excipients for formulation of NDDS
Selection and application of excipients in pharmaceutical formulations with specific industrial applications

Unit-IV 08 Hours

Unit-V

Selection and quality control testing of packaging materials for pharmaceutical product development- regulatory considerations.

Recommended Books (Latest editions)

1. Pharmaceutical Statistics Practical and Clinical Applications by Stanford Bolton, CharlesBon; Marcel Dekker Inc.
3. Pharmaceutical Dosage Forms, Tablets, Volume II, edited by Herbert A. Lieberman and Leon Lachman; Marcel Dekker, Inc.
8. Aulton’s Pharmaceutics – The Design and Manufacture of Medicines, Michael E. Aulton, 3rd Ed.
10. Pharmaceutical Dosage Forms – Tablets Vol 1 to 3, A. Liberman, Leon Lachman and Joseph B. Schwartz
13. Advanced Review Articles related to the topics.
Objective of the Course

➢ Basic Understanding of Acquisition of human resources, Development of human resources and Human Resource Management.

Student Learning Outcomes/ Objectives

➢ Student will be aware about development, maintenance of Human resource, separation process and research etc.

Course Content:

UNIT I The field of HRM: An overview, concept and functions, personnel to HRM. 05 Hours

UNIT II The Personnel organisation: Structure of human resource development and role and responsibilities of the human resource manager. 05 Hours

UNIT III Personnel policies: Formulation and essentials of sound personnel policies. 04 Hours

UNIT IV Acquisition of human resources: Objectives, policies and process, manpower planning, job analysis, job description, job specification, recruitment, selection, induction, placement, promotion and transfer. 06 Hours

UNIT V Development of human resources: Determining training needs, training, and management development and performance appraisal. 08 Hours

UNIT VI Maintenance of human resources: Compensation, administrative job evaluation, designing and administering the wage and salary structure. 07 Hours

UNIT VII Separation processes: Turnover, retirement, layoff and discharge, VRS. 05 Hours

UNIT VIII Research and the future: Current trends and future implications for HRM. 05 Hours
Reference Books
1) Human Resource Management by Aswathappa, K.
2) Human Resource Management Theory and Practice by Bratton, J. and Gold, J.
3) Human Resource Management by Dessler, G.
4) Human Resource Management by Flippo, E.
5) Managing Human Resources by Gomez-Mejia, L.
6) Human Resource Management by Ivantsevich, J.
7) Human Resource Management by Kandula, S. R.